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Introduction

— Bayesian Linear Regression (BLR) extends classical
regression by incorporating prior information and producing
posterior distributions over model parameters.

— Advantages:
= Handles high-dimensional and small-sample problems.
= Provides full uncertainty quantification.
= Enables regularization and integration of prior biological

knowledge.



Applications in Genomics

— Bayesian Linear Regression (BLR) is widely applied in
quantitative genetics and genomics.
— Common use cases:

Genome-Wide Association Studies (GWAS) and fine-mapping
of causal variants.

Genetic prediction and heritability estimation.

Pathway and gene-set enrichment analyses.

Integrative multi-omics modeling (genome, transcriptome,
epigenome).



Classical Linear Regression

Model

y=XB+e, e~N(0,0c%L)

- 9. outcomes

- X: design matrix
- B: coefficients

- e: are the residuals

- 02: residual variance



Estimation

Regression effects:

Residual variance:

Inference via standard errors and t-tests, confidence intervals, and
prediction intervals.



Limitations

No explicit control over effect size distribution

Sensitive when collinearity is high

Not identifiable when p > n

— Uncertainty largely asymptotic unless normality assumptions
hold



Why Bayesian Linear Regression?

— Combines likelihood and prior to form the posterior.
— Priors express beliefs about effect sizes:
= Normal — many small effects
= Spike-and-slab — sparse effects
— Acts as a regularizer:
= Shrinks small/noisy effects toward 0
= Preserves large, important effects
— Stable when p > n due to prior information.
— Provides full posterior distributions for 3 and o2.



Overview: Bayesian Linear Regression

— Combines data and prior knowledge using Bayes’ rule.
Uses conjugate priors to yield closed-form full conditionals.
Employs Gibbs sampling to approximate the posterior
distribution.

Estimates parameters, uncertainty, and predictions from
posterior draws.



Bayesian Linear Regression with Gaussian Priors

Bayesian linear regression starts with the same model structure as
classical linear regression.

y=XB+e, e~N(0,0%L)

y: n X 1 vector of observed outcomes

X: n X p design matrix of predictors

B: p x 1 vector of unknown coefficients

— e: Gaussian noise with mean 0 and variance o

2



Likelihood in Bayesian Linear Regression

Because the residuals are Gaussian, it follows that the marginal
distribution of y is:

e~ N(0,0%1,)

The marginal distribution of y is:

y~ N(XB, O'QIn)

This defines the likelihood the probability of the observed data
given parameters (3 and o?:

ply | X,B,0%) = N(XB,0%1,)



Introducing Priors

In Bayesian linear regression, we specify prior distributions that
express our beliefs about parameters before seeing the data.

A common conjugate prior for the regression coefficients is:

B | 02 ~ N(O,O’ZIP)

This reflects the belief that most effect sizes are small and centered
near zero — consistent with the polygenic assumption in genetics.



Role of the Prior Variance 02

The parameter og acts as a shrinkage (regularization) parameter:

— Small Uf — stronger shrinkage toward zero.
— Large 02 — weaker shrinkage, allowing larger effects.

It controls the strength of regularization and is often treated as
an unknown hyperparameter estimated from the data.



Priors on Variance Components

We also place priors on the variance components to complete the
hierarchical model.

‘71% | Sy, v, ~ Sy x 2(vy), % |S,v~Sx3(v)

Here:

— S, and v, are user-defined hyperparameters that control the

prior distribution on the variance of regression coefficients.

— S and v are hyperparameters for the residual variance 2.



Conjugate Priors and Regularization

Conjugate priors keep posteriors in the same family
(e.g., scaled inverse-chi-squared), allowing closed-form Gibbs
updates.

They also serve as regularizers:

— The prior on 3 shrinks small or noisy effects toward zero.
— Priors on variance components prevent overfitting, especially
when p > n.

Thus, conjugate priors make Bayesian linear regression efficient and
stable.



Posterior Distribution

In Bayesian analysis, we combine the likelihood and priors using
Bayes' rule to obtain the joint posterior:

p(B,03,0% |y) xply | B,0°) p(B | o}) p(oy) p(a?)

This posterior captures all updated knowledge about the unknown
parameters after observing the data.

It forms the basis for computing posterior means, credible
intervals, and predictions.



Conjugacy and Gibbs Sampling

With conjugate priors, each parameter’s full conditional
distribution has a closed-form solution.

This makes Gibbs sampling a natural and efficient inference
method.

— Parameters are updated one at a time, each from its
conditional posterior.

— The resulting Markov chain explores the joint posterior of

Gibbs sampling thus provides an easy way to approximate the full
posterior in Bayesian linear regression.



Full Conditional for

Given 02, o7, and the data y, the regression coefficients have a
multivariate normal conditional posterior:

B ’ 0-270%7yN N(M,BHE,B)

where

X'x 1\ XTy
ZBZ<02+U§> » Mg =Xp—_5

This distribution represents our updated belief about 5
after observing the data, while holding o7 and o2 fixed.



Comparison to Classical OLS
In classical regression, the OLS estimator is

Bors = (XTX) 'XTy, y~ N(XB,0%I)

The estimate of /3 is independent of o2,
since o2 only scales the likelihood, not its maximum.

In Bayesian regression, o2 appears explicitly in the posterior:

xXTx 1\' XTy
Yg = <02+U§> y Mg =Xp—_5

The term - introduces shrinkage, regularizing estimates and
e

b
stabilizing inference especially when p > n or predictors are highly
correlated.

Thus, the Bayesian posterior mean is a regularized,
uncertainty-aware generalization of OLS.



Full Conditional for Bj

Instead of sampling f3 jointly, we can update each coefficient 3; one
at a time, holding all others fixed efficient for large p or
spike-and-slab models.

Let X, be the jth column of X and define the partial residual:

rp=y—X_ ;6

Then the conditional posterior for ﬁj is univariate normal:

Bi| D~N T - 20 T 2
X X;+o?fo) X;X;+0%/o}

This corresponds to a regularized least-squares update. Residual
updates avoid matrix inversion, scale to high dimensions, and
extend naturally to sparse (spike-and-slab) models.



Full Conditional for O'g

The conditional distribution of the prior variance O'g, given [ and
the hyperparameters, is a scaled inverse-chi-squared:

o} | B~ Sy x2(5)

where

- ~ BB+ v, S,
Ub:vb+p7 Sb: By bt
b

At each Gibbs iteration, Ug is sampled directly given 3. This update
reflects our revised belief about the variability of effect sizes after
observing the current posterior draw of £.



Full Conditional for o2

The conditional distribution of the residual variance o2,

given [ and the data, is also scaled inverse-chi-squared:

o? | B,y ~ Sx72()

where

~ _ T —_—
Gmvin §=WXB) (y—XB)+vS
v

At each Gibbs iteration, 0 is sampled directly given 3.
This captures our updated belief about the residual variability
after accounting for the current linear predictor X 3.



Gibbs Sampling: Motivation

Bayesian inference often involves complex posteriors that lack
closed-form solutions. To approximate these, we use Markov Chain
Monte Carlo (MCMC) methods.

MCMC builds a Markov chain whose stationary distribution is the
target posterior. Once the chain has converged, its samples can be
used to estimate:

— Posterior means, variances, and credible intervals
— Predictive distributions
— Other functions of interest

Among MCMC algorithms, the Gibbs sampler is especially useful
when all full conditional distributions are available in closed form.



Gibbs Sampling: The Algorithm

For Bayesian linear regression with conjugate priors, the joint
posterior is:

p(B,03, 0% | y) < p(y | B,0°) p(B | o) p(0}) p(o?)

We iteratively draw from the following full conditionals:

1. Sample 3 | 02,02,y
2. Sample o7 | 3
3. Sample 02 | B,y

Each step updates one parameter given the latest values of the
others. Repeating this sequence yields samples from the joint
posterior p(3,0%,02 | y).

Because each conditional is standard (Normal or scaled inverse-y?),
Gibbs sampling is both efficient and easy to implement.



Posterior Summaries

After running the Gibbs sampler, we obtain posterior draws

{0MYL | for parameters such as 3;, 02, or o7.

jr
We summarize the posterior distribution via:

— Posterior mean

E[6 | y] ~ Ze

— Posterior median: the median of ()
— Credible interval (95%)

[0]0.025’ [9]0.975

These summaries describe the most probable values of 8
and their uncertainty after combining data and prior beliefs.



Estimating Uncertainty

Bayesian inference provides full posterior distributions, not just

point estimates. Uncertainty is quantified directly from the posterior
samples:

— Posterior standard deviation

SD(0 | y) %\/T 77 20

t=1

The width of the credible interval reflects this uncertainty.
Parameters with broader posteriors are estimated with less precision,

and the degree of uncertainty depends on both the data and the
prior.



Posterior Prediction

Given a new observation x we can predict using posterior draws:

new'’

1. Compute predicted means for each sample:

Ghow = o B

2. Add residual uncertainty:
Yhew ~ N (23,80, 021)

The resulting samples {yﬁ?w} form a posterior predictive
distribution, from which we can derive predictive intervals and
evaluate predictive accuracy.



Model Checking and Hypothesis Testing

Posterior samples enable rich model diagnostics and hypothesis
testing:

— Posterior probability of an event

> 1(8 #0)

t=1

N

%\’—‘

Pr(3; #0|y) ~

— Posterior predictive checks
Simulate new datasets using posterior draws and compare them
to the observed data to assess model fit.

— Model comparison
Bayes factors and marginal likelihoods can be approximated to
formally test or compare competing models.

These tools extend Bayesian inference beyond estimation to model
validation, uncertainty quantification, and decision-making.



Convergence Diagnostics

Before interpreting MCMC results, we must check that the Gibbs
sampler has converged to the target posterior distribution.

Convergence diagnostics assess whether the Markov chain has
reached its stationary distribution and is producing valid samples.

Two basic strategies are:

— Burn-in — Discard early iterations (e.g., first 1000) to remove
dependence on starting values.
— Thinning — Keep every k-th sample to reduce autocorrelation.

These steps improve sample quality and ensure reliable posterior
summaries.



Trace Plots

A simple yet powerful diagnostic is the trace plot,
showing sampled parameter values §*) over iterations t.

— A converged chain fluctuates around a stable mean — no
trend or drift.

— Multiple chains from different starting points should overlap
and mix well.

Trace plots help detect: - Lack of stationarity (upward/downward
trends) - Poor mixing or multimodality - Burn-in issues

Visual inspection is often the first step in assessing convergence.



Autocorrelation

Samples from a Gibbs sampler are correlated, especially for tightly
coupled parameters.

The autocorrelation function (ACF) quantifies dependence across
lags k:

ST RO — )90+ — 9)

— t=1

TS e —ap

t=1

— High p;, — slow mixing and fewer effective samples
— Low p;, — better mixing and faster convergence

Reducing autocorrelation may require more iterations,
reparameterization, or thinning the chain.



Effective Sample Size (ESS)

Autocorrelation reduces the number of independent samples
obtained.
The effective sample size (ESS) adjusts for this:

T

ESS() = —————
¥ 1"‘22?:1@@

— Small ESS — chain is highly correlated, less informative
— Rule of thumb: ESS > 100 per parameter for stable inference

ESS provides a quantitative measure of sampling efficiency
and helps determine whether more iterations are needed.



~

Gelman—Rubin Diagnostic (R)

When running multiple chains, the Gelman—Rubin statistic
compares between-chain and within-chain variability.

For m chains with T iterations each:

1 & T - =
W=— 2 B=—— 0. —0)2
m ; S’L ’ m — 1 ;( 7 )
The potential scale reduction factor:
. vV oo T-1 1
R=\l—, V=—7—W++-_DB
W’ T T

— R =~ 1 — convergence achieved

— R > 1.1 — chains have not converged



Geweke Diagnostic
The Geweke test checks whether early and late portions of a single
chain have the same mean, indicating stationarity.
6, —0g
\/Var ) + Var(0p)

Typically:

— Segment A = first 10% of the chain
— Segment B = last 50% of the chain

Under convergence, Z ~ N (0, 1).

- |Z| <2 — chain likely stationary
— |Z| > 2 — potential non-convergence

These diagnostics ensure that posterior summaries reflect the true
target distribution.



Spike-and-Slab Bayesian Linear Regression

As in classical BLR, the outcome is modeled as:

y=Xb+e, eNN(0,02In)

where y is the n x 1 response, X the design matrix, b the regression
coefficients, and o2 the residual variance.

This defines the likelihood:

y | b,0% ~ N (X0, O’2In>

The goal is to estimate b and identify which predictors truly
contribute to .



Motivation for the Spike-and-Slab Prior

In standard Bayesian linear regression:

Bj ~ N<070-l%)

This Gaussian (shrinkage) prior assumes all predictors have small
effects, but it does not allow exact zeros — limiting variable
selection.

The spike-and-slab prior addresses this by mixing two components:

— A spike at zero — excluded predictors
— A slab (wide normal) — active predictors

This yields sparse, interpretable models that select relevant
variables.



The Spike-and-Slab Mixture Prior

Each regression effect is drawn from a two-component mixture:

p(b; | o, m) = 7w N(0,07) + (1 — ) d

where:

— 7 = prior probability that b; is non-zero
— 0y = point mass at zero

Thus, with probability 7 a predictor is active (slab), and with
probability 1 — 7 it is excluded (spike).



Advantages of Spike-and-Slab Priors

This hierarchical mixture prior provides several benefits:

— Sparsity — allows exact zeros for irrelevant predictors

— Interpretability — binary indicators give posterior inclusion
probabilities (PIPs)

— Adaptivity — the inclusion probability 7 is learned from the
data

— Balance — captures both strong signals (detection) and small
effects (prediction)

Hence, spike-and-slab models combine variable selection with
Bayesian uncertainty quantification.



Hierarchical Representation

We express each effect as:

where:

a; | o2 ~N(0,02), 4, |m ~ Bernoulli(r)

— «y: effect size when predictor is included
— 0;: binary inclusion indicator (0 or 1)

Marginalizing over ¢, yields the spike-and-slab mixture prior above.



Prior for the Inclusion Probability m

The overall sparsity level is controlled by 7, assigned a Beta prior:

7 ~ Beta(a, )

— Small «, large 3 — favor sparser models
— o= =1 — uniform prior
— Larger a — denser models

This prior lets the data determine the degree of sparsity.



Priors for Variance Components

Variance parameters use scaled inverse-chi-squared priors:

Ug ~ Spx 2 (vy), 0% ~ Sx 3 (v)

These are conjugate, providing closed-form conditional updates.
Hyperparameters (.S, v,) and (S, v) encode prior beliefs about
effect size variability and residual noise.



Joint Posterior Structure

Combining the likelihood and priors, the joint posterior is:

p(p,a,8,m08,0% | y) x p(y | p, o, 6,0%) p(a| 0f) p(é | 7) p(m) p(of)

This captures our updated beliefs about effects, inclusion
indicators, and variance components.



Gibbs Sampling for Spike-and-Slab BLR

Inference proceeds via Gibbs sampling, cycling through these
conditional updates:

al|D
S| D
m| D
o2 | D
o2 | D

A N

Here, D denotes the data and all other current parameter values.
Each conditional follows a standard distribution (Normal,
Bernoulli, Beta, scaled-x2).

Iterating these updates generates samples from the joint posterior.



Posterior Inclusion Probabilities

The posterior inclusion probability (PIP) measures how likely
each predictor is truly associated with ¥:

T
Pr(d =11 y) = 7> 0"

t=1

— High PIP — predictor is likely important
— Low PIP — predictor likely irrelevant

PIPs summarize variable relevance and drive Bayesian feature
selection.



Summary of Bayesian Linear Regression

Bayesian Linear Regression combines likelihood and prior to
form the posterior, enabling principled modeling, regularization,
and uncertainty quantification.

— Inference via MCMC (often Gibbs sampling) with posterior
draws for means, credible intervals, and predictions.

— Spike-and-slab priors enable sparsity and variable selection,
assigning exact zeros to irrelevant predictors and identifying
key variables via posterior inclusion probabilities (PIPs).

— Conjugate and mixture priors yield efficient and robust
inference, even when p > n.

— With proper convergence checks, Bayesian models provide
stable and reliable inference across a wide range of data
settings.



Applications in Genomics

We have now seen the basic framework of Bayesian Linear
Regression (BLR)

and will illustrate how it provides a unified approach for analyzing
genetic and genomic data.

— Genome-Wide Association Studies (GWAS) and
fine-mapping of causal variants.

— Genetic prediction and heritability estimation.

— Pathway and gene-set enrichment analyses.

These examples show how BLR connects statistical modeling with
biological interpretation in quantitative genetics.



