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1 Introduction

Bayesian linear regression (BLR) extends the classical linear regression framework by incorporating
prior information into the model and producing full posterior distributions over parameters, rather
than single-point estimates. This approach offers several key advantages, particularly in the context
of modern data analysis challenges such as high dimensionality, small sample sizes, and the need
for uncertainty quantification.



In genomics and other biological applications, BLR is widely used for tasks such as mapping genetic
variants, predicting genetic predisposition (e.g., polygenic risk scores), estimating genetic parame-
ters like heritability, and performing gene set enrichment or pathway analyses. These applications
benefit from BLR’s ability to unify inference and prediction within a probabilistic framework.

The BLR model builds on the familiar linear regression formulation, where the observed outcome is
modeled as a linear function of predictors plus Gaussian noise. However, unlike classical inference—
which relies on least squares or maximum likelihood estimation and provides only point estimates
and asymptotic intervals—Bayesian inference yields full posterior distributions over the unknown
coefficients and variance. This allows for richer uncertainty quantification and more robust infer-
ence.

Several motivations drive the use of Bayesian methods in linear regression. First, BLR naturally
quantifies uncertainty through posterior distributions, allowing the analyst to compute credible
intervals, posterior probabilities, and predictive distributions. Second, prior distributions act as
regularizers, helping to stabilize estimation in noisy or underdetermined settings, such as when the
number of predictors p exceeds the number of observations n. Gaussian priors encourage shrinkage
toward zero, while more structured priors (such as spike-and-slab) enable sparse or grouped solu-
tions. Third, BLR makes it straightforward to incorporate external knowledge—such as biological
relevance or prior experimental results—into the modeling process.

These notes begin by reviewing the classical linear regression model and its limitations. We then
introduce the Bayesian linear regression model, outline the inference workflow, and show how to
derive the full conditional posterior distributions for the model parameters using conjugate priors.
Finally, we describe how posterior inference is performed using Gibbs sampling and conclude with
practical considerations for implementation, diagnostics, and applications in R.



2 Classical Linear Regression

Classical linear regression is one of the most widely used statistical modeling tools. It provides a
simple yet powerful framework for modeling the relationship between a response variable and a set
of predictor variables. The goal is to estimate how changes in the predictors X affect the outcome
y, assuming a linear relationship and normally distributed errors.

2.0.1 Model Specification

We start by specifying the standard linear model:

y=XB+e €e~N(0,0%),)

Here:

e vy is the n x 1 vector of observed outcomes,
o X is the n x p design matrix of predictors (which may include an intercept),
e [ is the p x 1 vector of unknown regression coefficients,

o o2 is the residual (error) variance,

« and ¢ is the vector of i.i.d. normal errors with mean zero and variance o2.

Because the errors are Gaussian, the distribution of y is:

y~ N(XB,0°1,)

This defines the likelihood—the probability model for the observed data given the parameters.

2.0.2 Parameter Estimation via OLS and MLE

In classical regression, parameters are estimated using Ordinary Least Squares (OLS), which
minimizes the residual sum of squares. Under the assumption of normally distributed errors, these
estimators also correspond to the Maximum Likelihood Estimators (MLE).

The OLS estimate for the regression coefficients is:

B=(XTX)'XTy

This estimator is only valid when X " X is invertible, which requires that the predictors are linearly
independent and that n > p.

The residual variance is estimated using:

RN o S T o /P

n—p= n—=ri=

which provides a measure of the average squared distance between the observed and fitted values.



2.0.3 Inference on Regression Coefficients

Once the model parameters are estimated, we can assess uncertainty and perform hypothesis
tests.

The estimated variance-covariance matrix of 3 is:

Var(3) = (X x)!

From this, the standard error for each estimated coefficient ,6’}- is:

SE(3;) = /82 [(XTX) 1],

27

To test whether a coefficient is significantly different from zero, we use the t-statistic:

t = b,
" SE(B))
Under the null hypothesis H, : §; = 0, and assuming Gaussian errors, this statistic follows a

t-distribution with n — p degrees of freedom.

A 100(1 — a)% confidence interval for 3, is given by:

B] =+ tn—p, a/2’ SE(B})

These tools allow us to quantify uncertainty in our parameter estimates and test hypotheses about
individual effects.

2.0.4 Prediction and Uncertainty in Predictions

For a new observation x (a p x 1 vector), the predicted mean response is:

new

~ T =
ynew - xnewﬁ

The variance of this predicted response reflects both the uncertainty in the coefficient estimates
and the inherent noise in the data:

Vat (fue) = 2 (1 4+,

new

(XTX) e

new )

This leads to prediction intervals that are wider than confidence intervals for 8 because they
account for additional variability in future observations.



2.0.5 Limitations of Classical Linear Regression

While classical linear regression is simple and interpretable, it has several well-known limitations:

It does not allow for the incorporation of prior knowledge about parameters.

There is no explicit control over the distribution of effect sizes.

The model becomes non-identifiable when the number of predictors exceeds the number of
observations (p > n), since X "X is not invertible.

Estimates can be unstable or highly variable in the presence of multicollinearity (highly
correlated predictors).

Uncertainty quantification relies on asymptotic results or the assumption of Gaussian er-
rors, which may not always hold in practice.

These limitations motivate the development and application of Bayesian linear regression, which
extends the classical framework by incorporating prior distributions and producing full posterior
distributions for all unknown parameters.



3 Bayesian Linear Regression with Gaussian priors

Bayesian linear regression starts with the same model structure as classical linear regression. We
assume the outcome vector y is generated from a linear function of predictors X with additive
Gaussian noise. Specifically, the model is written as:

y=XB+e, e~N(0,0%1,)

Here, y is an n x 1 vector of observed outcomes, X is the n x p design matrix of predictors, j is
the p x 1 vector of unknown regression coefficients, and e is a vector of random errors assumed
to be independent and identically distributed (i.i.d.) Gaussian noise with mean zero and constant
variance o2. Because the residuals are Gaussian, it follows that the marginal distribution of y is:

y~ N(XB,0°1,)

This defines the likelihood—the probability model for the observed data, conditional on the un-
known parameters $ and o?2.

3.0.1 Prior Distributions
To perform Bayesian inference, we must specify prior distributions that encode our beliefs about
the parameters before observing the data.

A commonly used conjugate prior for the regression coefficients g is a multivariate normal distri-
bution centered at zero:

Blog ~N(0,031,)

This prior reflects a belief that most effect sizes are small and centered near zero, consistent with
the polygenic assumption in genetics. The parameter o7 is the prior variance and acts as a
shrinkage parameter:

o When o7 is small, the prior strongly favors values of 3 near zero, resulting in more shrinkage
of estimates.

o When o7 is large, the prior becomes more diffuse, allowing for larger effect sizes and less
shrinkage.

Thus, af controls the prior belief about the magnitude of effect sizes, and is often treated
as an unknown hyperparameter to be estimated from the data (e.g., via hierarchical modeling or
Gibbs sampling).

In addition, it is common to place scaled inverse-chi-squared distributions on the two variance
parameters, af and o2

‘713 | Sy v ~ Sy x 2 ()



o2 | S,v~8Sx2(v)
Here:

e S, and v, are user-defined hyperparameters that control the prior distribution on the variance
of the regression coefficients.
« S and v are hyperparameters for the residual variance o2.

These priors are conjugate to the Gaussian likelihood and the normal prior on g, which means
they lead to posterior distributions in the same family (i.e., scaled inverse-chi-squared or Inverse-
Gamma). This conjugacy simplifies derivations and enables closed-form Gibbs sampling steps.

These priors not only express prior knowledge or assumptions but also act as regularizers. In
particular:

o The prior on 3 shrinks small/noisy effect estimates toward zero.
e The priors on variance parameters prevent overfitting and stabilize inference, especially in
high-dimensional scenarios where p > n.

This makes conjugate priors a practical and computationally efficient choice in Bayesian linear
regression models.

3.0.2 Posterior Distribution

The core of Bayesian analysis is to combine the likelihood with the prior distributions using Bayes’
rule, which yields the joint posterior:

p(B,03,0” | y) < ply | B,0%) p(B | 07) p(af) p(o?)

This posterior encapsulates all updated knowledge about the unknown parameters after observing
the data. It is the key quantity of interest in Bayesian inference and serves as the basis for computing
summaries such as posterior means, credible intervals, or predictions.

Because we are using conjugate priors, the full conditional distributions of the parameters have
closed-form solutions, which makes Gibbs sampling a natural and efficient inference strategy.
In Gibbs sampling, we alternately sample from the conditional distributions of each parameter
given the others.

3.0.2.1 Full Conditional for

The full conditional distribution of the regression coefficients 3, given o2 and the observed data y,
is a multivariate normal distribution. We can write this in a compact and interpretable form using
the conditional posterior mean pz and conditional posterior covariance matrix :

B ‘ ‘72705731"’]\[(#,87 Eﬁ)

where:



—1
XTX I XTy
5 ( o2 +a§) Mg = 250 3

This conditional distribution reflects our updated belief about the regression coefficients after ob-
serving y, while conditioning on fixed values of o and o2,

3.0.2.2 Full Conditional for j3;

In practice, rather than sampling the entire vector 8 jointly, we can update each coefficient 3; one
at a time, holding all others fixed. This is often more efficient for large p, and is particularly
useful in Gibbs sampling frameworks like spike-and-slab models.

Let X, be the jth column of the design matrix, and define the partial residual:

rp=y— X6

where X_, is the matrix with the jth column removed, and _; is the vector of all coefficients
except ;.

This coordinate-wise update strategy is justified because the full conditional distribution of § is
multivariate normal. When all other coefficients are held fixed, the conditional distribution of
a single coefficient 3; given the data and remaining parameters is univariate normal. This is a
standard result from the theory of the multivariate normal distribution, which implies that any
subset of variables also follows a (conditional) normal distribution.

The full conditional for j; is:

X, 2
8| D~ N L
J X]X;+02/op) X[ X;+ 020}

This update can be derived directly from the Gaussian likelihood and Gaussian prior on 3;, and
corresponds to a regularized least-squares update. By cycling through all j = 1,...,p using the
current residuals, we efficiently obtain samples from the full conditional distribution of 3.

Residual updates are also attractive because they avoid matrix inversion, scale well to high
dimensions, and naturally extend to models with sparsity indicators (e.g., spike-and-slab).

3.0.2.3 Comparison to Classical OLS

Recall that in classical linear regression, the ordinary least squares (OLS) estimator of j is:

Bors = (XTX) ' XTy
This estimator is obtained by maximizing the likelihood under the assumption of Gaussian errors:

y~ N(XB,0°I)



While the likelihood depends on o2, it cancels out when estimating 3 via OLS or MLE, because it
only affects the scale of the likelihood, not the location of the maximum. As a result, the estimate
of A is independent of 2.

In contrast, the Bayesian formulation includes prior information, and o2 appears explicitly in the
posterior:

X'x I\
EB:<2+2>

T
This introduces dependence on o2
precision of our belief about f.

, meaning that uncertainty about the data also affects the

Moreover, the additional term # in the posterior precision matrix encodes prior information about

b
effect sizes. This shrinks the estimates toward zero and helps regularize the inference, particularly
when p > n or when predictors are highly correlated.

Thus, the Bayesian posterior mean:

XTy
Pp =25 3

can be seen as a regularized, uncertainty-aware generalization of the OLS estimate.

3.0.2.4 Full Conditional for o?

The full conditional distribution of the prior variance o7, given the current values of 3 and the
hyperparameters, is a scaled inverse-chi-squared distribution:

op | B~ Sy x2(T,)
where:

o U, = vy + p is the updated degrees of freedom, with p the number of regression coefficients,

h

~ + 5, .

e S5, = M is the updated scale parameter.
v

b

This form is convenient for Gibbs sampling: at each iteration, a new value of a% can be sampled
directly, given the current value of 8. It reflects our updated belief about the variability of the
regression coefficients after observing the current posterior draw of S.



3.0.2.5 Full Conditional for o2

The full conditional distribution of the residual variance o2, given the current values of 3 and the
data, is a scaled inverse-chi-squared distribution:

0% | B,y ~ Sx2(v)
where:

e U =w+n is the updated degrees of freedom, with n the number of observations,

~ — XA (y—X
« S= y f) (y~ B) + oS is the updated scale parameter.
v

This form is convenient for Gibbs sampling: at each iteration, a new value of 2 can be sampled
directly, given the current values of 3. It reflects our updated belief about the residual variability
in the data after accounting for the current linear predictor Xz.

10



4 Gibbs Sampling

Bayesian inference often requires sampling from complex posterior distributions that cannot
be computed analytically. In such cases, we rely on Markov Chain Monte Carlo (MCMC)
methods to approximate the posterior using a sequence of dependent samples.

MCMC algorithms construct a Markov chain whose stationary distribution is the target posterior.
Once the chain has converged, the sampled values can be used to estimate posterior expectations,
make predictions, and conduct inference.

One of the simplest and most widely used MCMC algorithms is the Gibbs sampler. Gibbs
sampling is especially convenient when all full conditional distributions of the model parameters
are available in closed form.

In the Bayesian linear regression model with conjugate priors, the joint posterior distribution is:

p(B,0%,0% | y) < p(y| B,02) p(B | o?) p(c?) p(o?)

We can implement a Gibbs sampler by iteratively drawing from the following full conditionals:

1. Sample 3 | 02,0%,y
2. Sample 0% | B
3. Sample o2 | B,y

Fach step updates one parameter conditional on the latest values of the others. Repeating this
sequence over many iterations yields samples from the joint posterior p(3,oZ,0? | y).

Because each conditional distribution is standard (normal or scaled inverse-chi-squared), sampling
is straightforward and efficient. Once the Gibbs sampler has converged, these posterior draws
form the basis for inference.

4.1 Posterior Summaries and Inference from Gibbs Samples

After running the Gibbs sampler and obtaining T" posterior draws of all parameters, we can use these
samples to compute a wide range of quantities relevant to Bayesian inference. These include:

¢ Posterior means and medians as point estimates of parameters
o Credible intervals to quantify uncertainty

e Posterior standard deviations as measures of variability

« Posterior probabilities of hypotheses, such as Pr(3; > 0| y)

e Posterior predictive distributions for new observations

e Model diagnostics such as convergence checks or residual analysis

These quantities allow us to summarize uncertainty, generate predictions, and make probabilistic
statements about model parameters and data.

11



4.1.0.1 Posterior Summaries

Once we have a collection of posterior draws for a parameter 0 (e.g., 3;, o2, or 0}), we can summarize
the posterior distribution using:

e Posterior mean:

1
E[0 |yl ~ —

pt)
T

M=

t=1

« Posterior median: The median value of the sampled §*).

o Credible intervals: For example, a 95% credible interval for f can be obtained as the 2.5%
and 97.5% quantiles of the posterior samples:

[9]0.0257 [9]0.975

These summaries provide insight into the likely values of the parameter after accounting for uncer-
tainty in both the data and prior beliefs.

4.1.0.2 Estimating Uncertainty

Bayesian inference provides full posterior distributions, not just point estimates. This allows
us to directly quantify the uncertainty of parameters:

e Posterior standard deviation:

SD(0 | y) ~ J % 3 (00— )’

e This uncertainty is reflected in the width of the credible intervals and can vary across different
parameters or under different priors.

4.1.0.3 Prediction

Given a new observation x
sampled parameter values:

news We can generate posterior predictive distributions using the

1. For each draw ¢, compute:
®) _ T 4k

:&HGW - xnew
2. Optionally, add residual noise from the corresponding draw of o(*):
new

Yhew ~ N (21,80, 021))

3. Use these yl(fe)w samples to construct predictive intervals or evaluate predictive performance.

12



4.1.0.4 Model Checking and Hypothesis Testing

The posterior draws can also be used for model diagnostics or hypothesis testing:

e Posterior probability of an event, such as a non-zero effect:

1 (8" #0)

NI =
M~

Pr(/Bj #0]y) ~

o~
Il
u

o Posterior predictive checks: Simulate new datasets from the model using posterior draws
and compare them to the observed data. Discrepancies may indicate model misfit.

e Bayes factors and marginal likelihoods can be computed or approximated for formal hy-
pothesis testing or model comparison, though these often require specialized methods beyond
standard Gibbs output.

These procedures allow us to move beyond point estimates and engage in a full Bayesian analysis
that accounts for uncertainty in parameter estimation, prediction, and decision-making.

13



5 Convergence Diagnostics for Gibbs Sampling

Before interpreting results from a Gibbs sampler, it is crucial to assess whether the sampler has
converged to the target posterior distribution. Convergence diagnostics help determine if the
Markov Chain has reached its stationary distribution and is providing valid samples.

5.0.0.1 Burn-in and Thinning

e Burn-in: Discard initial samples (e.g., first 1000 iterations) to allow the chain to reach
stationarity.

e Thinning: Keep every k-th sample to reduce autocorrelation. This helps with storage but
does not improve convergence.

5.0.0.2 Trace Plots

A simple but effective tool is the trace plot: plotting sampled values of a parameter (e.g., 5;0)
against iteration number t:

e A converged chain should resemble a stationary process with no apparent trend.
e Multiple chains started from different initial values should mix well and overlap.

5.0.0.3 Autocorrelation

Gibbs samples are often correlated. We assess this using the autocorrelation function (ACF):

e For lag k, the sample autocorrelation of parameter @ is:

S, (600 —6) (640 —§)
— 2
Zf:l (H(t) o 9)

e High autocorrelation suggests slow mixing, requiring longer chains or thinning.

5.0.0.4 Effective Sample Size
The effective sample size (ESS) adjusts for autocorrelation and reflects the number of indepen-
dent samples:
T
K
1 + 2 Z k=1 Pk

o A small ESS means the chain is highly autocorrelated and less informative.
e As a rule of thumb, aim for ESS > 100 per parameter.

ESS(6) =

14



5.0.0.5 Gelman—Rubin Diagnostic (R)

When running multiple chains, the Gelman—Rubin statistic R compares between-chain and within-
chain variance:

1. Let m be the number of chains and 7" the number of iterations per chain.

2. For each parameter 6, compute:

e The within-chain variance:

e The between-chain variance:

3. The potential scale reduction factor is:

" / - T—1 1
%, where V = TW—FTB

e A ValueA}A% ~ 1 indicates convergence.
e Values R > 1.1 suggest that the chain has not converged.

5.0.1 Geweke Diagnostic

The Geweke diagnostic tests for stationarity by comparing the means of two segments of a single
chain:

o Typically, the first 10% and the last 50% of the chain are used.
o For a parameter 6, the test statistic is:
7 5:4 —0p i
\/Var(HA) + Var(0p)

where:

- é 4 is the mean of the early window,
— 05 is the mean of the late window.

e Under the null hypothesis of stationarity, Z approximately follows a standard normal distri-
bution.

15



Values of Z far from zero (e.g., |Z| > 2) suggest that the chain has not converged, as early and
late samples differ systematically.

Monitoring these diagnostics ensures that posterior summaries and predictions are based on reliable
samples from the true posterior distribution.

16



6 Bayesian Linear Regression with Spike-and-Slab Priors

Similar to the Bayesian linear regression model with Gaussian priors, we begin by specifying the
likelihood for the observed data. The response vector y is assumed to follow a Gaussian distribu-
tion, conditional on the regression parameters:

y|b,0* ~ N (Xb, 0%I,)

where y is an n x 1 vector of observed outcomes, X is an n X m design matrix of predictor variables,
b is an m x 1 vector of regression coefficients, and o2 is the residual variance. This defines the
data-generating process: given the regression coefficients and residual variance, the outcomes are
normally distributed around the linear predictor Xb.

In standard Bayesian linear regression (BLR), each regression coefficient B, is typically assigned a
Gaussian prior:

Bj ~ N(Oaalg)

This reflects the belief that all predictors may contribute to the outcome, with effect sizes centered
around zero and uncertainty governed by the prior variance o7. Such shrinkage priors perform
well in settings where many small effects are expected. However, they do not permit exact zeros,
limiting their utility for variable selection or enforcing sparsity.

To address this, we adopt a hierarchical model structure using spike-and-slab priors, a type
of two-component mixture model. Conditional on the regression coefficients, the outcomes
y follow a Gaussian distribution as above. At the second level of the hierarchy, however, each
regression effect is assumed to arise from one of two components:

e A slab: a diffuse Gaussian distribution representing non-zero effects.

o A spike: a point mass at zero representing exactly zero effects.

This formulation allows us to directly model sparsity. Specifically, each coefficient b, is assumed to
follow the mixture prior:

p(b; | op,m) =7 N(0,07) + (1 —m) b,

where §, denotes a point mass at zero, and 7 is the prior probability that b, is non-zero.

Compared to standard Gaussian priors, spike-and-slab priors allow for exact zeros in regres-
sion coefficients. This enables automatic variable selection within a fully Bayesian framework,
combining interpretability with uncertainty quantification.

The resulting two-component mixture prior offers several key advantages:

e Sparsity: Supports exact zeros in the coeflicient vector, allowing the model to exclude irrel-
evant predictors.

o Interpretability: Posterior samples of the binary inclusion variables ¢, yield posterior
inclusion probabilities (PIPs), which help identify important predictors.

17



e Adaptivity: By placing a Beta prior on the sparsity parameter 7, the model can learn the
degree of sparsity directly from the data.

e Prediction—detection trade-off: The mixture structure balances the inclusion of small,
potentially weak effects (for prediction) with the identification of stronger signals (for detec-
tion).

In summary, the spike-and-slab prior extends Bayesian linear regression to high-dimensional settings
by enabling principled variable selection and adaptive regularization. The following sections derive
the full conditional distributions used for inference via Gibbs sampling.

6.0.1 Prior Distributions

6.0.1.1 Spike-and-Slab Prior for Regression Effects

To explicitly model sparsity, we use a spike-and-slab prior, which introduces a hierarchical
structure. Each regression coeflicient b; is expressed as:

Here, §; is a binary inclusion indicator, and «; is the effect size when the predictor is active. We
place the following priors:

a; | of iy N(0,03), & |m N Bernoulli(7)
That is, each ¢, is independently drawn from a Bernoulli distribution with success probability ,
which represents the a priori probability that predictor i is relevant.

Marginalizing over ¢;, the prior for b, becomes a two-component mixture:

p(b; | of,m) =7 N(0,08) + (1 —m) - 4,

where J, denotes a point mass at zero. This expresses that with probability 7, b, is drawn from a
Gaussian (“slab”), and with probability 1 — 7, it is exactly zero (“spike”).

The parameter 7w controls the overall sparsity of the model. Importantly, the prior inclusion prob-
ability 7 is distinct from the posterior inclusion probability Pr(é, = 1 | y), which is inferred
from the data. A simple Monte Carlo estimate of this posterior probability is the average value of
0; across samples from a Gibbs sampler.

18



6.0.1.2 Prior for the Inclusion Probability =

Rather than fixing 7 in advance, we often treat it as a random variable and assign it a Beta
prior:

7 ~ Beta(a, )

This prior is defined on the interval [0, 1] and allows the data to inform the level of sparsity. The
choice of («, ) reflects prior beliefs:

o Small a and large § favor sparse models (most effects are zero).
e a= [ =1 gives a uniform prior.
o Larger « relative to 8 favors denser models.

Because of conjugacy with the Bernoulli prior on d,, the posterior update of 7 is straightforward

in Gibbs sampling.

6.0.1.3 Priors for Variance Parameters

As in the Gaussian BLR model, we assign scaled inverse-chi-squared priors to the variance
components:

e For the prior variance of the effect sizes:

oy ~ Sy X (vp)

e For the residual variance:

0%~ S-x*(v)

These conjugate priors allow for closed-form updates in Gibbs sampling. The hyperparameters
(Sp,vp) and (S, v) encode prior beliefs about the variability of the coefficients and the residuals,
and can be tuned to reflect prior knowledge or set to weakly informative values when such knowledge
is limited.

6.0.2 Posterior Distribution

In the spike-and-slab Bayesian linear regression model, we introduce hierarchical priors for sparsity
and variance components. The joint prior distribution over all model parameters factorizes
as:

p(p, e, 8, m,03,0%) < pla| op) - p(d | 7) - p(r) - plog) - p(o?)
with the components defined as follows:

 p(a|of): Normal priors on the latent effect sizes,
e p(d | m): Bernoulli priors on binary inclusion indicators,

19



o p(m): Beta prior on the inclusion probability,
o p(o?) and p(0?): Scaled inverse-chi-squared priors for the variance components.

These priors encode our initial beliefs about sparsity and effect magnitudes before seeing the data.

Combining the prior structure with the likelihood using Bayes’ rule, we obtain the joint posterior
distribution of all unknown parameters given the data y:

p(p, o, 8,7 07,0% | y) x ply | e, 0,0°%) - pla | op) - pd | 7) - p(r) - plog) - p(o?)

This expression defines the complete probabilistic model and captures our updated beliefs about
the intercept u, the regression effects «, the sparsity indicators §, the prior inclusion probability ,
and both variance parameters after observing the data.

Since this posterior is analytically intractable, inference proceeds via Gibbs sampling, where each
parameter block is updated iteratively from its full conditional distribution.

6.0.3 Gibbs Sampling

In this hierarchical Bayesian model with spike-and-slab priors, all full conditional posterior
distributions are of known standard form. This allows us to use Gibbs sampling, where each
parameter is sampled from its conditional distribution given the data and all other current param-
eter values.

At each iteration of the Gibbs sampler, we cycle through the following updates:

[w| D), [e| D], [0] D), [r|D], [of]D], [0%]|D]

where D denotes the observed data and all other current parameter values. The remainder of this
section outlines the key updates for each block.

6.0.3.1 Updating Effect Sizes ¢;

Each latent effect a; has a conditional posterior distribution that depends on whether the corre-
sponding inclusion indicator d; is 0 or 1.

If 6, = 0, the effect b; = ;- 6, = 0 is excluded from the model, and the likelihood does not depend
on «,. In this case, «; is not identifiable from the data, and its posterior is proportional to its
prior:

p(ai ’ Dvéz :0> OCN(()?O—Z%)

Because «; has no effect on the likelihood when 0, = 0, practical implementations typically set

If 6, = 1, the effect contributes to the likelihood. Define the partial residual that excludes the
contribution from predictor i:

20



ri=y—1lp—X_;b,;

Then, the full conditional for o is Gaussian with mean and variance:

XTr. 2
OZ,L|DNN( 7,””7, g )

X' X; + 0?0} XX, + 020}

This update corresponds to a shrinkage estimator of «; that balances fit to the data (via X, ;)
with regularization (via 7).

6.0.3.2 Updating Inclusion Indicators J,

Each indicator §; € {0,1} determines whether the ith predictor is included in the model. Its full
conditional is a Bernoulli distribution with success probability based on comparing the model
fit with and without the predictor.

Let:

« RSS;: residual sum of squares with ¢, = 0,
e RSS;: residual sum of squares with 4; = 1.

Then:

exp (—#RSSl) T

Pr(o,=1| D)=
(0 D) exp (—52zRSSy) (1 — 7) + exp (—52zRSS; ) 7

To sample §,;, compute this probability and draw from the Bernoulli distribution.

6.0.3.2.1 Numerically Stable Version (Using Log-Odds)

To avoid numerical underflow when RSS values are large, compute the log-odds:

0, 1 1—m
IOg(l—Hi) —Tﬂ(RSSO—RSSQ—log< - >

Then recover the probability 6, using the inverse-logit (logistic) function:

_ exp(K;)
" 1+ exp(K;)

This provides a stable way to compute the probability of inclusion, especially when likelihood
differences are large.
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6.0.3.3 Updating 7
With prior m ~ Beta(n, 5) and §; ~ Bernoulli(), the conditional posterior is:

7| D ~ Beta (Zm:éi—i-n, m—i@—i—ﬁ)
i—1 i=1

6.0.3.4 Updating o7

The full conditional distribution of the prior variance 0%, given the current values of the effect sizes
«; and inclusion indicators ¢, is a scaled inverse-chi-squared distribution:
op | a0 ~ 51; X2 ()
where:
e p= Zzl d; is the number of included (non-zero) effects,
o U, = v, + p is the updated degrees of freedom,

L " 602 +vu,S,

[ ] b = Z:1 lN
Uy

is the updated scale parameter.

This update accounts only for those coefficients currently included in the model (§; = 1), reflecting
the prior belief that excluded effects are exactly zero and thus do not contribute to the variance
estimate.

This form allows direct sampling of o7 at each Gibbs iteration and reflects the updated uncertainty
about the size of the non-zero regression effects.

6.0.3.5 Updating o2

The full conditional distribution of the residual variance o2, given the current values of 3 and the
data, is a scaled inverse-chi-squared distribution:

o2 | B,y ~ Sx2(D)

e U =wv+n is the updated degrees of freedom, with n the number of observations,

~ —XB) " (y—X
« S= y 8) (yﬂ B) +vs is the updated scale parameter.

This form is convenient for Gibbs sampling: at each iteration, a new value of 02 can be sampled
directly, given the current values of 3. It reflects our updated belief about the residual variability
in the data after accounting for the current linear predictor X{.

This completes one iteration of the Gibbs sampler. Each step updates parameters from their full
conditional distributions, enabling efficient posterior inference under the spike-and-slab prior.
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6.0.3.6 Posterior inference

Each step in the Gibbs sampler involves only standard distributions (Gaussian, Bernoulli, Beta,
scaled-inverse-chi-squared), allowing efficient and scalable posterior inference. Iterating these up-
dates produces samples from the joint posterior, which can be used to estimate marginal posterior
summaries such as:

e Posterior means or medians of effects,

e Posterior inclusion probabilities,

e Credible intervals for regression coefficients,
o Model sparsity levels.

6.0.4 Posterior Inclusion Probability
While 7 defines a global prior probability of inclusion, the posterior inclusion probability
Pr(§, = 1| y) is computed separately for each marker after observing the data.

A Monte Carlo estimator of this probability is:

- 1 L
Pr(d; =1]y) =~ 4"

(t)

where ¢, is the sampled value of J; in iteration ¢ of the Gibbs sampler.

This posterior quantity reflects our updated belief about whether each marker is truly associated
with the trait, and is a key quantity used in Bayesian fine-mapping.
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