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1 Introduction

Estimation of genetic predisposition can play an important role in precision health. It can help inform
diagnostic procedures and subsequent treatment decisions. The true genetic predisposition for an individual
cannot be observed. It is only possible to measure its phenotypic value, which is influenced by variation
in genotypes and the environment. Therefore, we need a way to infer the genetic predisposition from the
phenotypic value. This section introduces the basic concepts in estimating genetic predisposition, including:

• The basic principle behind estimating genetic predisposition.
• Quantifying the accuracy of the estimated genetic predisposition.
• Use of genetic relationships for estimating genetic predisposition.
• The link between genetic parameters and the estimated genetic predisposition.
• Different methods, data sources and experimental designs for estimating genetic predisposition.

2 Basic principles for genetic predisposition estimation

Genetic predisposition is estimated using information on phenotypes and genetic relationships for individ-
uals in a study population. As introduced previously, the phenotype for a quantitative trait (can be with
continuous, categorical or dichotomous variation) is the sum of both genetic and environmental factors. The
amount of information provided by the phenotype about the genetic predisposition is determined by the
heritability, which measures the proportion of genetic variance contained in the total phenotypic variance.
Furthermore, phenotypes collected from close relatives provide more information about the genetic predispo-
sition of an individual. In this section, we will illustrate these principles using phenotypic data and genetic
relationships used for estimating genetic predisposition. We will derive a general approach for predicting
genetic predisposition and illustrate it with different examples.

2.1 Genetic model

The genetic predisposition is based on an assumption of a specific genetic model. The total genetic effect
for an individual is the sum of both additive and non-additive effects:

y = µ + a + d + i + e, (1)

where µ is the population mean, a is the genetic predisposition (i.e., additive effect), d is the dominance
effect, i is the epistatic effect, and e is the environmental deviation (or residual) not explained by the genetic
effects in the model. However, only the additive genetic effects are passed on to the offspring and therefore
contributes to the genetic predisposition. In contrast, non-additive genetic effects (i.e., dominance and
epistasis) are degraded by recombination and are not inherited, but established within each new offspring
where they might be important for the individual’s phenotype. Furthermore, additive genetic effects explain
the majority of the total genetic variance, thus, we only consider the additive genetic model as the basis for
genetic predisposition estimation:

y = µ + a + e.

The true genetic predisposition for an individual, is the sum of all additive genetic effects that affect the
quantitative trait:

a =
q∑

j=1
aj ,
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where a is the total additive genetic effect, and aj is the additive genetic effect for locus j. We assume (based
on the central limit theory) that the true genetic predisposition, a, and the residual term, e, are normally
distributed which means that the observed phenotype (y) is also normally distributed:

a ∼ N(0, σ2
a),

e ∼ N(0, σ2
e),

y ∼ N(µ, σ2
a + σ2

e).

2.2 Expected genetic predisposition conditional on observed phenotype

The genetic predisposition cannot be observed but must be estimated from phenotypic data and genetic
relationships between individuals from the study population. Estimation of an unobserved parameter using
statistical modelling expresses the estimated quantity as a mathematical function of the observed data. Under
the assumption of multivariate normality for a and y (which is justified under the central limit theorem and
the assumptions of many genetic and environmental factors), the expected value of the genetic predisposition,
E(a), conditional on the observed phenotype (y) can be written as:

E(a|y) = E(a) + Cov(a, y)[V ar(y)]−1(y − E(y)) (2)

The genetic predisposition is defined as deviation from the general mean which means that the expected
value E(a) of the true genetic predisposition a is E(a) = 0. Therefore, the expected value of the genetic
predisposition is:

E(a|y) = Cov(a, y)[V ar(y)]−1(y − E(y)) (3)

The expression for the estimate of the genetic predisposition consists of two parts. The term y − E(y)
shows that the observed phenotypic values are corrected for the fixed effects represented by µ. The term
ba|y = Cov(a, y)[V ar(y)]−1 often referred to as the regression coefficient is a weighting factor with which the
corrected phenotypic values are multiplied.

To be able to estimate the genetic predisposition we need to determine the values for E(a), E(y), V ar(y),
and Cov(a, y) from the expression above. It is possible to derive simple formula’s for these terms based on:

• adjusted phenotypic observations for the quantitative trait of related individuals,
• heritability of the quantitative trait,
• knowledge of inheritance laws and genetic relationships (e.g. parents, grandparents, siblings) for indi-

viduals with phenotypic observations of the quantitative trait.

We will distinguish between true and estimated genetic predisposition using the following notation:

a = additive genetic value = true genetic predisposition.

â = E(a|y) = estimated additive genetic value = estimated genetic predisposition.

2.2.1 Estimated genetic predispositions are unbiased

Below we show that â is an unbiased estimator of a. The expected value of the predicted genetic predisposition
(E(â)) can be computed as:

E(â) = E(Cov(a, y)[V ar(y)]−1(y − E(y)))
= Cov(a, y)[V ar(y)]−1E((y − E(y)))
= Cov(a, y)[V ar(y)]−1(E(y) − E(y)) = 0

Because we have already specified that E(â) = 0, it follows that E(â) = E(a) = 0. This means that â is an
unbiased estimator of a.
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2.2.2 Variance of estimated genetic predisposition (â)

In a similar fashion, we can derive expressions for the variance of the genetic predisposition (V ar(â)) and
the covariance between the true and the estimated genetic predisposition (Cov(a, â)):

V ar(â) = V ar(Cov(a, y)[V ar(y)]−1(y − E(y)))
= Cov(a, y)[V ar(y)]−1V ar((y − E(y)))[V ar(y)]−1Cov(a, y)
= Cov(a, y)[V ar(y)]−1V ar(y)[V ar(y)]−1Cov(a, y)
= Cov(a, y)[V ar(y)]−1Cov(a, y)

Cov(a, â) = Cov(a, Cov(a, y)[V ar(y)]−1(y − E(y)))
= Cov(a, y)[V ar(y)]−1Cov(a, (y − E(y)))
= Cov(a, y)[V ar(y)]−1Cov(a, y)
= Cov(a, y)[V ar(y)]−1Cov(a, y)
= V ar(â)

2.2.3 Conditional density of estimated genetic predisposition (â)

In some cases, e.g., for specifying confidence intervals of true genetic predisposition, it might be interesting
to have a look at the conditional density f(a|â). This density is a multivariate normal density with expected
value E(a|â) and variance V ar(a|â). These values can be computed based on the theory of conditional
multivariate normal densities.

E(a|â) = E(a) + Cov(a, â)[V ar(â)]−1(â − E(â))
= 0 + V ar(â)[V ar(â)]−1(â − 0)
= â

V ar(a|â) = V ar(a) − Cov(a, â)[V ar(â)]−1Cov(a, â)
V ar(a|â) = V ar(a)(1 − Cov(a, â)2V ar(a)−1V ar(â)−1)
V ar(a|â) = V ar(a)(1 − r2

a,â)

2.3 Accuracy of genetic predisposition estimates

Estimates of genetic predisposition (â) are estimates of the true genetic predisposition (a), which cannot be
observed directly. It is therefore important to quantify how well we have estimated the genetic predisposition
in relation to the true genetic predisposition. This can be done using accuracy or reliability.

Accuracy is the correlation between the estimated and the true genetic predisposition:

ra,â = Cov(a, â)√
Var(a) Var(â)

(4)

Reliability is the squared correlation, r2
a,â, between the estimated genetic predisposition and the true genetic

predisposition.

A high correlation means that the estimated genetic predisposition is very accurate.

To be able to compute the accuracy or reliability of the estimated genetic predisposition we need to determine
the values for the terms, Cov(a, â), V ar(â), and V ar(a) in the expression above. It can be shown that the
variance of the estimated genetic predisposition is the same as the covariance between the true and estimated
genetic predisposition (i.e. Cov(a, â) = V ar(â)). Therefore, the reliability can be expressed as:

4



r2
a,â = Var(â)

Var(a) (5)

The reliability (r2
a,â) can be interpreted as the part of the genetic variation that is explained by the esti-

mated genetic predisposition whereas the remainder (1 - r2
a,â) is the uncertainty. Reliability of the genetic

predisposition (r2
a,â) is important because it determines how well we can predict an individual’s genetic pre-

disposition. If r2
a,â is low then we might consider more phenotypic records, in order to make better-informed

precision health decisions.

2.4 Prediction error variance of the estimated genetic predisposition

Every prediction is associated with an error, and the same is true for the estimated genetic predisposition
â. The variability of the error for the predicted genetic predisposition is quantified by the prediction error
variance (PEV) computed as:

V ar(a − â) = V ar(a) − 2Cov(a, â) + V ar(â) = V ar(a − â)
= V ar(a)(1 − V ar(â)V ar(a)−1)
= V ar(a)(1 − r2

a,â)

The standard error of prediction (SEP) can be a useful quantity. SEP corresponds just to the square root
of PEV. Therefore,

SEP (â) =
√

V ar(a − â)

=
√

V ar(a)(1 − r2
a,â))

= σa

√
(1 − r2

a,â))
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3 Estimation of genetic predisposition using pedigree information

Genetic predisposition is estimated using information on phenotypes and genetic relationships among indi-
viduals in a study population. We will illustrate the basic principles of genetic predisposition estimation using
some simple examples where the trait has been measured on the individuals themselves or close relatives.

3.1 Estimation of genetic predisposition and accuracy based on own phenotype

An estimate of the genetic predisposition (a) based on own phenotype (y) can be calculated as:

E(a|y) = E(a) + Cov(a, y)[V ar(y)]−1(y − E(y))
E(a|y) = 0 + σ2

a[σ2
a + σ2

e ]−1(y − µ)
E(a|y) = h2(y − µ)

Thus, the estimated genetic predisposition using own phenotypic records can be computed based on an
estimate of the trait heritability (h2) and the observed phenotype deviation (y − µ).

The expression for expected value terms (E(a) and E(y)) in the equation above is based on rules for expected
value of a sum of (normally distributed) random variables:

E(a) = 0
E(e) = 0
E(y) = E(µ + a + e)

= E(µ) + E(a) + E(e)
= µ + 0 + 0
= µ

The expression for (co)variance terms (V ar(y), and Cov(a, y) ) in the equation above is based on rules for
the variance of a sum of (normally distributed) random variables:

Var(y) = V ar(a) + V ar(e) + 2Cov(a, e)
Var(a) = σ2

a

Var(e) = σ2
e

Cov(a, e) = 0
Var(y) = σ2

a + σ2
e

Cov(a, y) = Cov(a, a + e)
= Cov(a, a) + Cov(a, e)
= σ2

a + 0
= σ2

a

The accuracy for the genetic predisposition based on own phenotype (y) can be calculated as:

ra,â = Cov(a, â)√
Var(a)

√
Var(â)

ra,â =
(h2)2σ2

y√
h2σ2

y

√
(h2)2σ2

y

ra,â =
√

h2
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The variance of the estimated genetic predisposition, V ar(â), can be expressed as:

V ar(â) = V ar(h2(y − µ))
V ar(â) = (h2)2V ar(y − µ) = (h2)2V ar(y) = (h2)2σ2

y

The variance of the true genetic predisposition, V ar(a), can be expressed by the heritability and phenotypic
variance:

σ2
a = (σ2

a)/(σ2
y)σ2

y = h2σ2
y.

Estimation of genetic predisposition based on own phenotype is only possible when the trait in question can
be measured (directly or indirectly) on the individual.

3.2 Estimation of genetic predisposition and accuracy based on phenotypes of
close relative

It may be possible to use phenotypic records from close relatives, such as, half-sibs, full-sibs, parents and
grandparents. Phenotypes collected on close relatives (as compared to distant relatives) provide more infor-
mation about the genetic predisposition of an individual (as close relatives have more DNA in common than
distant relations has). In the following, we will provide a general formula for estimating genetic predisposition
and their accuracies using phenotypic information on a single type of relatives.

The genetic predisposition can general be achieved as:

â = ba|y(y − µ), (6)

where the regression coefficient (ba|y) quantifies the weight (or importances) of the phenotypic information:

ba|y = a′nh2

(1 + (n − 1)r , (7)

where a′ is the genetic relationship between a specific individual and individuals with phenotypes, n is the
number of phenotypic records, h2 is the trait heritability, and r is correlation between individuals with
observations (r = a′′h2 + c2, where a′′ = genetic relationship between individuals with records and target,
c2 = common environmental component). Thus, the importance given to a specific source of information
depends on the additive genetic relationship between individuals (a′), the heritability of the trait (h2), and
the amount of information (n), i.e., the number of relatives (progenies or sibs, etc.).

The reliability of estimated genetic predisposition can be obtained as:

r2
a,â = (a′)2nh2

1 + (n − 1)r . (8)

Thus, reliability depends on the same factors as the estimated genetic predisposition except for the phenotypic
value. Although the reliability depends on the number of records it does not depend on the numerical value
of phenotypes. From this formula is it clear that higher reliability (and accuracy) can be achieved when:

• The genetic relationship to individuals with information (a′) is high.
• There are many individuals with phenotypic records (n is high).
• The heritability (h2) is high.
• The correlation between records (r = a′′h2 + c2) is low (little redundancy in observations).
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3.3 Genetic relationship used for estimating genetic predisposition

Related individuals share genes and thus resemble each other, i.e., they have correlated phenotypic values
to an extent that depends on additive genetic relationships. Consider a simple parent-offspring example.
The offspring get one copy of the genome (i.e., half of the diploid genome) from each parent, and therefore
the genetic predisposition for the offspring is the average of the parents’ genetic predisposition (a), plus
Mendelian deviation (amendelian), which is the part of the genetic predisposition that is due to random
segregation of the genes from each parent:

achild = 1
2afather + 1

2amother + amendelian

The term amendelian is necessary, because two fullsibs i and j, both having the same parents, receive different
random samples of parental alleles. Hence, the genetic predisposition, ai and aj , of fullsibs, i and j, are not
going to be the same. The Mendelian deviation reflects the random contribution of (Mendelian) segregation
to genetic predisposition of individuals.

In this example, the 1
2 refers to the additive genetic relationship which indicates that the offspring receives half

of its alleles from each parent. The weight given to a specific source of information depends on the additive
genetic relationship with the individual. Examples of different types of additive genetic relationships (Aij)
between the various sources (j) and the individual itself, i.e., the individual to be evaluated (i), can be seen
in the table below.

Table 1: Examples on additive genetic relationship (Aij) between individual i and j.

Type of relative Aij

Self 1.0
Unrelated 0
Mother 0.5
Father 0.5
Grandparent 0.25
Child 0.5
Full-sib 0.5
Half-sib 0.25
Twins (MZ/DZ) 1/0.5
Cousin 0.0625
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4 Best Linear Unbiased Prediction for estimating genetic predis-
position using pedigree information

Genetic predisposition can be estimated using the Best Linear Unbiased Prediction (BLUP) method. BLUP
estimates genetic predisposition using phenotypic information for individuals from a general pedigree (with
arbitrary relationships among them). The estimation of genetic predisposition based on multiple sources of
information must correct for the redundancy between the different sources of information (e.g., redundant
information provided by parents and grandparents). Moreover, it is necessary to adjust for environmental
factors that may affect the phenotypes in the study populations.

The key idea behind BLUP is to estimate the identifiable environmental factors as fixed effects and to predict
the genetic predisposition as random effects simultaneously in a linear mixed model. Here, mixed refers to
the presence of two types of effects: fixed effects (identifiable effects from environmental or genetic factors)
and random effects (non-identifiable effects from segregating genetic factors and fluctuating environmental
conditions). The BLUP method was developed by Henderson (e.g. Henderson 1973a and Henderson 1975)
and the properties of this method are directly incorporated into its name:

• B stands for best which means that the correlation between the true (a) and the predicted genetic
predisposition (â) is maximal or the prediction error variance (V ar(a − â)) is minimal.

• L stands for linear which means the predicted genetic predisposition are linear functions of the obser-
vations (y)

• U stands for unbiased which means that the expected values of the predicted genetic predisposition
are equal to the true genetic predisposition

• P stands for prediction

BLUP is based on a linear mixed model methodology, and estimates of genetic predisposition can be obtained
by solving mixed model equations. The BLUP method also requires a genetic relationship matrix and
estimates of variance components (e.g., σ2

a and σ2
e).

BLUP approaches are widely used for estimation of genetic predisposition. The popularity of BLUP is
not only due to the theoretical foundations of the method, but also the efficient algorithms developed by
Henderson for computing predicted genetic predisposition, even in very large study populations.

4.1 Linear mixed model

The linear mixed model contains the observation vector for the trait(s) of interest (y), the fixed effects b
that explain systematic differences in y, and the random genetic effects a and random residual effects
e.

A matrix formulation of a general model equation is:

y = Xb + a + e,

where

y : is the vector of observed values of the trait,
b : is a vector of fixed effects,
a : is a vector of random genetic effects,
e : is a vector of random residual effects,

X : is a known design matrix that relates the elements of b to their corresponding element in y.

In this statistical model the random effects (a and e) and the phenotypes (y) are considered to be random
variables which follow a multivariate normal (MVN) distribution. In general terms the expectations of these
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random variables are:

a ∼ MV N(0, G)
e ∼ MV N(0, R)

y ∼ MV N(Xb, V )
(9)

where G = Aσ2
a, and R = Iσ2

e are square matrices of genetic and residual (co)variances among the individuals,
respectively, and V = Aσ2

a + Iσ2
e is the overall phenotypic covariance matrix.

4.2 Estimating fixed and random effects in the linear mixed model

The goal of linear mixed model analysis is to estimate the fixed effects, b, and random genetic effects, a.
This can be done using the BLUE and BLUP equations shown below.

The best linear unbiased estimator (BLUE) of b̂ is:

b̂ = (X ′V −1X)−1X ′V −1y. (10)

The BLUP of a is:

â = GV −1(y − Xb̂). (11)

.

The BLUP equation for the estimate of the genetic predisposition consists of three parts: the term, y − Xb̂,
which shows that the observed phenotypic values are corrected for the fixed effects represented by Xb̂;
G = Cov(a, y) which is the covariance between the true genetic predisposition (a) and phenotypes (y); and
V −1 = [V ar(y)]−1 which is the inverse of the phenotypic covariance matrix. which is similar to the expression
shown earlier for the expected value of the genetic predisposition conditional on the observed phenotype y:

E(a|y) = Cov(a, y)[V ar(y)]−1(y − E(y)). (12)

4.3 Mixed model equations

Estimates of the fixed and random effects in the linear mixed model (i.e., b̂ and â) can also be obtained by
solving the following system of equations simultaneously:

[
XT R−1X XT R−1Z
ZT R−1X ZT R−1Z + G−1

] [
b̂
â

]
=

[
XT R−1y
ZT R−1y

]
. (13)

The expression above is called a mixed model equation (MME). It no longer contains the inverse V −1

and hence the MME is much simpler to solve. Instead, the MME contains the inverses R−1 and G−1, which
are easier to invert: R = Iσ2

e is often a very simple matrix, and G = Aσ2
a is usually smaller than (or the

same size as) V . As a consequence, whenever we have to estimate genetic predisposition using BLUP we
will usually use the mixed model equations introduced later in this section.
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4.4 Prediction error variance, reliability and accuracy

The precision of estimates of genetic predisposition can be calculated from the inverse of the left hand side
of the mixed model equation (Eq. (13)):

[
X ′X X ′Z
Z ′X Z ′Z + G−1λ

]−1
=

[
C11 C12

C21 C22

]
, (14)

where λ = σ2
e

σ2
2

= 1−h2

h2 , C11 corresponds to the fixed effects (X ′X) and C22 to the random genetic effects
(Z ′Z + A−1λ).

The prediction error variance (PEV ) for the genetic predisposition can be calculated as:

PEV = C22σ2
e , (15)

or expressed for individual i is:

PEVi = C22
ii σ2

e , (16)

which is the diagonal element of the inverse of the coefficient matrix corresponding to individual i, multiplied
by the residual variance.

To compute the reliability, r2
â,a, we use the following relationship:

PEVi = (1 − r2
â,a)σ2

a = C22
ii σ2

e . (17)

Therefore the reliability can computed as:

r2
â,a = 1 − C22

ii

σ2
e

σ2
a

(18)

= 1 − C22
ii λ, (19)

and the accuracy computed as:

râ,a =
√

1 − C22
ii λ. (20)

BLUP estimates of genetic predisposition, especially from the linear mixed model including all relationships,
is a useful tool in precision health. Identification of individuals with an extreme genetic predisposition based
on BLUP estimates maximizes the probability for correct ranking of individuals and decisions in precision
health. There are many factors contributing to this:

• The linear mixed model which makes full use of information from all relatives increases accuracy
(precision) of the estimated genetic predisposition.

• The genetic predisposition are adjusted for systematic environmental effects in an optimal way.

• Several traits can be analyzed simultaneously.
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However, estimation of genetic predispostion is based on phenotypic observations, and that regardless of how
great the BLUP procedure may be, it cannot compensate for bad data. So a good health recording system
is necessary for a reliable genetic evaluation. Furthermore, BLUP assumes that the genetic parameters used
are the true ones. In practice, this means that genetic predisposition will only be accurate if the estimated
genetic parameters are close enough to their true value.
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5 Estimation of genetic predisposition using genomic information

In recent, years much attention has been given to genomic information due to the technological advancements
in genotyping platforms. Today, dense genetic maps of single nucleotide polymorphisms (SNP) are available,
and they enable us to divide the entire genome into thousands of relatively small chromosome segments.

Genetic predisposition is conceptually simple to calculate. First, the entire genome is divided into small
chromosome segments by dense markers. Second, the additive effects of each chromosome segment are
estimated simultaneously. Finally, the genetic predisposition is calculated as the sum of all chromosome
segment effects. The chromosome segment effects are estimated for a group of individuals (i.e., a reference
or training population). For any remaining individual, only a blood or tissue sample is needed to determine
its genetic predisposition. For use in precision health, it is desirable that the genetic predisposition can be
estimated accurately and early in the individual’s life. The effect of each of these small chromosome segments
can be estimated if we have phenotypes and genotypes from many individuals (from several hundreds to
hundreds of thousands or even millions). With sufficiently dense marker maps, the chromosome segment
effects capture the genomic variability in the population in which they were estimated, because markers are
in linkage disequilibrium with the causal gene that they bracket.

6 BLUP for estimating genetic predisposition using genomic in-
formation

We will present two approaches that are commonly used to estimate genetic predisposition using genomic
information. The first approach is referred to as MBLUP. In this approach, marker effects are estimated
from observed phenotypic and genomic marker data recorded in the reference (or training) population.
Genetic predisposition is estimated from the marker effects and genomic marker data for individuals in the
test population. The second approach is referred to as GBLUP. In this approach, genetic predisposition is
estimated from observed phenotypic and genomic marker data for individuals in the reference (or training)
population. Genetic predisposition for individuals in the test population is estimated based on their genomic
relationship to individuals in a reference population. Both approaches allow for estimation of genetic
predisposition for individuals without phenotypes and close relationships. This is one of the main advantages
with genomic prediction. As soon as DNA is available for an individual, its marker genotypes can be
determined and their genetic predisposition can be estimated. Furthermore, genetic predisposition estimated
from genomic information is generally more accurate than when estimated from pedigree information.

6.1 A linear mixed model for estimating marker effects (MBLUP)

The linear mixed model for estimating marker effects contains the observation vector for the trait(s) of
interest (y), the fixed effects (b) which explain systematic differences in y, the random marker effects (s),
and the random residual effects (e). A matrix formulation of a general linear mixed model for estimating
marker effects is:

y = Xb + Ms + e, (21)

where

y : is the vector of observed values of the trait,
X : is a known design matrix that relates the elements of b to their corresponding element in y.
b : is a vector of fixed effects,

M : is a known design matrix that relates the elements of s to their corresponding element in y.
s : is a vector of random marker effects,
e : is a vector of random residual effects.
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In the linear mixed model specified above, the marker and residual effects (s and e) and the phenotypes (y)
are considered to be random variables following a multivariate normal (MVN) distribution:

s ∼ MV N(0, S)
e ∼ MV N(0, R)

y ∼ MV N(Xb, V ),

where S = Isσ2
s is a square matrix of (co)variances among marker effects (usually assumed independent),

and R = Iσ2
e is a square matrix of residual (co)variances among residuals (also assumed independent, most

of the times), and V = MM ′σ2
s + Iσ2

e is the overall phenotypic covariance matrix.

The marker variance σ2
s is defined as:

σ2
s = σ2

a∑m
j=1 2pj(1 − pj)

, (22)

where σ2
a is the total additive genetic variance, m is the number of markers, and pj is the frequency of the

marker-allele that is associated with the effect QTL-allele.

6.1.1 Estimation of marker effects in MBLUP

Estimates of the fixed effects, b, and random marker effects, s, in the linear mixed model specified above can
be done using the BLUE and BLUP equations shown below.

The best linear unbiased estimator (BLUE) of the fixed effects, b̂, is:

b̂ = (X ′V −1X)−1X ′V −1y. (23)

The best linear unbiased prediction (BLUP) of the marker effects, ŝ, is:

ŝ = SM ′V −1(y − Xb̂). (24)

The BLUP equation for estimating marker effects consists of three parts: (1) the term y −Xb̂ shows that the
observed phenotypic values are corrected for the fixed effects represented by Xb̂, (2) the covariance between
the true marker effects (s) and phenotypes (y) described as Cov(s, y) = SM ′ = M ′σ2

s and (3) the inverse
of the phenotypic covariance matrix described as [V ar(y)]−1 = V −1. Alternatively, estimates of the (fixed
and random) effects in the model can be obtained by solving the mixed model equations. The mixed-model
equations for the model given in (21) have the following structure:

[
XT R−1X XT R−1M
MT R−1X MT R−1M + S−1

] [
b̂
ŝ

]
=

[
XT R−1y
MT R−1y

]
. (25)

6.1.2 Estimation of genetic predisposition in MBLUP

The estimates of the marker effects ŝ in (25) can be used to estimate genetic predisposition â for any individual
with genomic information (i.e., genotypes for the same set of markers used in the reference population) by:

â =
m∑

j=1
Mj ŝj , (26)

where Mj corresponds to the vector of observed marker genotypes of an individual.
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6.1.3 Encoding of the marker genotype matrix M

The elements in the genotype matrix M can be encoded in different ways. The results from the genotyping
laboratory represents the nucleotides found at a given genome position. The nucleotides (genotypes) at each
position (marker locus) must be encoded numerically for it to be used in the linear model. Let us assume
that at a given SNP-position, the bases G or C are observed and G corresponds to the allele with the positive
effect on our trait of interest. Based on the two observed alleles, the possible genotypes are GG, GC or CC.
One possible code for this SNP in the matrix M might be the number of G-alleles, which corresponds to 2,
1 and 0. Alternatively, it is also possible to use the codes 1, 0 and −1 instead, which corresponds to the
factors with which a is multiplied to get the genotypic values in the single locus model.

6.2 A linear mixed model for estimating genetic predisposition (GBLUP)

The linear mixed model for estimating genetic predisposition (GBLUP) contains the observation vector for
the trait(s) of interest (y), the fixed effects b that explain systematic differences in y, and the random genomic
effects a and random residual effects e. A matrix formulation of the GBLUP model is:

y = Xb + Za + e, (27)

where

y : is the vector of observed values of the trait,
b : is a vector of fixed effects,
a : is a vector of random genomic effects,
e : is a vector of random residual effects,

X : is a known design matrix that relates the elements of b to their corresponding element in y,
Z : is a known design matrix that relates the elements of a to their corresponding element in y.

In the linear mixed model (specified above) the genomic and residual effects (a and e) and the phenotypes
(y) are considered to be random variables that follow a multivariate normal (MVN) distribution:

a ∼ MV N(0, G̃)
e ∼ MV N(0, R)

y ∼ MV N(Xb, V ),

where G̃ = Gσ2
a, and R = Iσ2

e are square matrices of genomic and residual (co)variances among the individ-
uals, respectively, and V = Gσ2

a + Iσ2
e is the overall phenotypic covariance matrix. The genomic relationship

matrix (G) is estimated from genomic marker data instead of pedigree information.

6.2.1 Estimation of genomic effects in GBLUP

Estimates of fixed effects (b) and random genomic effects (a) in the linear mixed model specified above are
obtained using the BLUE and BLUP equations shown below.

The best linear unbiased estimator (BLUE) of the fixed effects (b̂) is:

b̂ = (X ′V −1X)−1X ′V −1y. (28)

The best linear unbiased prediction (BLUP) of the genomic effects (â) is:
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â = G̃Z ′V −1(y − Xb̂). (29)

The BLUP equation for the estimate of the genomic effects consists of three parts: (1) the term y−Xb̂ shows
that the observed phenotypic values are corrected for the fixed effects as represented by Xb̂, (2) the covariance
between the true genomic effects (a) and phenotypes (y) described as Cov(a, y) = G̃Z ′ = GZ ′σ2

a and (3) the
inverse of the phenotypic covariance matrix described as [V ar(y)]−1 = V −1. Alternatively, estimates of the
fixed and random effects in the model can be obtained by solving the mixed model equations which have the
following structure:

[
XT R−1X XT R−1Z
ZT R−1X ZT R−1Z + G̃−1

] [
b̂
â

]
=

[
XT R−1y
ZT R−1y

]
. (30)

From (29) we can see that the GBLUP estimation procedure looks very similar to estimation of genetic
predisposition based on pedigree information (PBLUP). In GLUP the covariances between genetic predis-
position is based on the genomic relationship matrix G which is computed from genomic markers whereas
in PBLUP it is based on the numerator relationship matrix A computed from pedigree information.

6.2.2 Estimation of genetic predisposition for individuals in the test population using GBLUP

The estimates of the genetic predisposition â1 for individuals with phenotypes can be used to estimate genetic
predisposition â2 for individuals that only have genomic information. Under the assumption of multivariate
normality for the true genetic predisposition (a ∼ MV N(0, Gσ2

a)), the expected value of the estimated
genetic predisposition for individuals without phenotypes (a2) conditional on the genetic predisposition for
individuals with phenotypes (â1) can be written as:

â2 = G̃12G̃−1
11 â1. (31)

The equation given in (31) consists of three parts: (1) the term â1 represents the genetic predisposition
for individuals with phenotypes in the reference population, (2) the covariance between the true genetic
predisposition for individuals without phenotypes (a2), for individuals in the test population, and individuals
with phenotypes (a1) in the training population is given as Cov(a1, a2) = G̃12 = G12σ2

a and (3) the inverse
of the genomic covariance matrix for individuals with phenotypes in the training population is given as
G̃−1

11 = σ−2
a G−1

11 .

6.2.3 Genomic Relationship Matrix G

The additive genomic relationship matrix, G, is constructed using all genomic markers (or potentially pruned
for LD) as follows:

G = WW T∑m
i=1 2pi(1 − pi)

, (32)

where W is the centered and scaled genotype matrix, and m is the total number of markers. Each column
vector of W was calculated as follows: wi = Mi − 2pi − 0.5, where pi is the minor allele frequency of the
i’th genomic marker and Mi is the i’th column vector of the allele count matrix (M) which contains the
genotypes coded as 0, 1 or 2 counting the number of minor alleles. The centering of the allele counts and
the scaling factor,

∑m
i=1 2pi(1 − pi), ensures that the genomic relationship matrix (G) has similar properties

as the numerator relationship matrix (A).

The main difference between the two types of genetic relationship matrices A and G, is that A is based on
the concept of identity by descent (sharing of the same alleles, transmitted from common ancestors), whereas
G is based on the concept of identity by state (sharing of the same alleles, regardless of their origin).
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6.3 Accuracy of genetic predisposition

Genetic predisposition that is estimated by using genomic information is generally more accurate than genetic
predisposition estimated by using only pedigree information. One of the reasons for this is the genomic
relationship matrix’s more efficient use of phenotypic information for all individuals (based on degree of
allele sharing) in the estimation procedure.

The accuracy of genetic predisposition estimates is trait specific and depends on the heritability and the
number of phenotypic records. The accuracy of genetic predisposition increases when (1) the size of the
training population increases, (2) the reference population represents as much of the relevant genetic variation
in the population as possible, (3) individuals in the test population are closely related to the reference
population, (4) the genetic diversity in the population is low (i.e., low effective population size) and (5)
better statistical models are applied.
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