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1 Linear mixed models

Linear mixed effect models (LMMs) are widely used in genetics and application includes single marker asso-
ciation analysis, estimation of genetic parameters (e.g. heritability and genetic correlation), and prediction
of genetic predisposition or disease risk. In this chapter we will start with a general introduction to the
linear mixed models to establish the notation and assumptions used throughout the notes. Two models that
are used to model the relationship between genotype and phenotype are introduced, but the application and
usage is reserved for other chapters. We will show that the two models are equivalent (but can differ in their
computaional complexity) and then expand the models to contain two (or more) random effects, followed by
a comparison of the models used in these notes.

The two models are M-BLUP, which models the marker effects of each observed genetic marker, and G-
BLUP, which models the genetic values of an individual. BLUP in this context is an abbreviation for Best
Linear Unbiased Predictor, and the solutions to these two BLUP models are shown in the ‘BLUP’ chapter
of these notes.

It is important here to understand the distinction between what is known as the ‘true model’ and an
‘instrumental model’. The true model is what generated the data and in the context of these notes, this would
be the biological machinery of genes being expressed and that ultimately produce the observed phenotypes.
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As we are still trying to infer the workings of this complex biological machinery, we instead refer to an
instrumental model that reflects our current understanding and what we are trying to compute.

For the following, we refer to the number of genotyped individuals as as n, and number of markers as m. To
introduce the two models, we are starting with simplified versions of the models, assuming one observation
per individual. We also assume that fixed effects have been reduced to a single intercept, i.e. Xβ = µ.

2 Linear mixed model for marker effects (M-BLUP)

The M-BLUP linear mixed model is a simple starting point, assuming the linear combination of marker
effects for each individual.

y = µ + Wb + e (1)

where

y is the n-length vector of observations and is the linear combination of the random variables b and
e plus

µ the intercept.
W is the n × m genotype matrix,
b is the m-length vector of marker effects, and
e is the n-length residual vector.

The genotype matrix W is the (scaled and centred) marker matrix, linking each of the n individuals to the
genotype at each of the m loci. See section 5 in this chapter for a discussion of this matrix.

2.1 Assumptions

The M-BLUP assumes a priori that the marker effects b are uncorrelated, i.e. b ∼ N
(
0, Iσ2

b

)
, where σ2

b is
the variance component for the marker effects and I is a m × m identity matrix. That is, the marker effects
are assumed to be independently sampled from a normal distribution with mean 0 and variance σ2

b . Do
not confuse this assumption with that the markers themselves might or might not be correlated (i.e. due to
linkage disequilibrium).

Residuals are assumed uncorrelated, but might be weighted, i.e. e ∼ N
(
0, Dσ2

e

)
where D is a n×n diagonal

matrix and each diagonal element may take a value corresponding to the uncertainty of the observation.
The residuals and marker effects are also assumed to be uncorrelated.

Expectations of y are E(y|µ) = µ, as the expectation of the random variables are 0.

Variance of y is given as

Var(y|µ) = Var(Wb + e|µ) (2a)
= Var(Wb) + Var(e) + Cov(Wb, e) + Cov(e, Wb) (2b)
= WW′ Var(b) + Var(e) + 0 + 0 (2c)
= WW′Iσ2

b + Dσ2
e (2d)

Step 2c is possible because the two random variables are assumed to be uncorrelated.
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2.2 Covariances

Covariances between the random variables in the M-BLUP model can be expressed as

Cov(y, b) = Wσ2
b (3a)

Cov(y, e) = Dσ2
e (3b)

which can be summarised as

Var

b
e
y

 =

 Iσ2
b 0 W′σ2

b

0 Dσ2
e Dσ2

e

Wσ2
b Dσ2

e WW′Iσ2
b + Dσ2

e

 . (3c)

3 Linear mixed model for individual effects (G-BLUP)

This model is similar to M-BLUP, although we are instead modelling the genetic values (sometimes referred
to as Genomic Estimated Breeding Values; GEBV) instead of the marker effects. We assume the connection
between marker effects and genetic values is Wb = g. There are some computational advantages for using
G-BLUP when n ≪ m, but this will be covered later.

The G-BLUP model can be written as
y = µ + g + e (4)

where y, µ and e are as for (1), and g is the n-length vector of genetic values.

3.1 Assumptions

In G-BLUP we make no (explicit) assumptions on the marker effects, instead we assume that the genetic
values are correlated by the relationship between the individuals, i.e. by pedigree or genetic similarity, such
that g ∼ N(0, Gσ2

g), where G is the n × n genomic relationship matrix; see remarks in section~5.

For the observations (y) and residuals (e), the assumptions are as in section~2.1. Variance is given as

Var(y|µ) = Var(g + e|µ) (5a)
= Var(g) + Var(e) + Cov(g, e) + Cov(e, g) (5b)
= Gσ2

g + Dσ2
e . (5c)

As in M-BLUP, step 5c is possible due to the two random variables are assumed uncorrelated.

3.2 Covariances

Covariances between the random variables in the G-BLUP model can be expressed as

Cov(y, g) = Gσ2
g (6a)

Cov(y, e) = Dσ2
e (6b)

and the entire model can be summarised as

Var

g
e
y

 =

Gσ2
g 0 G′σ2

g

0 Dσ2
e Dσ2

e

Gσ2
g Dσ2

e Gσ2
g + Dσ2

e

 . (6c)
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4 Proof of equivalence of M-BLUP and G-BLUP

To prove that G-BLUP and M-BLUP are equivalent, we must show that the expectation and variance of
the models are identical. In the two sections above, the expectations are shown to be E(y|µ) = µ, and the
variances are derived in (2d) and (5c). We must therefore show the following equivalence:

Var (µ + Wb + e) = Var(µ + g + e)
WW′Iσ2

b + Dσ2
e = Gσ2

g + Dσ2
e

Assuming that G is calculated1 as WW′

m , cancelling the component from the residual, and dropping the
identity, we get

m · σ2
b = σ2

g (7)

Alas, we are left to show that the two variance components differ by a factor of m. Assuming that the
columns of genotype matrix W has been centred and scaled [VanRaden, 2008], we can assume

W ∼ (0, 1)

That is, that W is sampled from an unknown distribution with mean zero and variance 1. The genetic
value for the ith individual is the linear combination of the marker effects, i.e.

gi = wib =
m∑
j

wijbj (8)

where wi is the iþrow vector of W and j is the jþlocus. Thus the conditional expectation of gi given W is

E(gi|wi) = wi E(b) = wi · 0 = 0 (9)

and the conditional variance is

Var(gi|wi) = wi Var(b)w′
i

= wiw′
iσ

2
b

=

 m∑
j

wij

 σ2
b

1The assumptions and implications of this are too cumbersome to discuss here, so the reader is directed to section 5 for a
discussion on the calculation of W and G.
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Hence, the marginal variance of gi is:

Var(gi) = Varwi
[E(gi|wi)] + Ewi

[Var(gi|wi)] (10a)
= 0 + Ewi

[Var(gi|wi)] (10b)

= Ewi

σ2
b

m∑
j

w2
ij

 (10c)

= σ2
b

m∑
j

E(w2
ij) (10d)

= σ2
b

m∑
j

[
Var(wij) + [E(wij)]2

]
(10e)

= σ2
b

m∑
j

[1 + 0] (10f)

σ2
g = σ2

b m (10g)

Expanding the expectation of a squared variable in step (10d) is done by the rule displayed in the stat box
6. The notation of Ewi and Varwi indicates the expectation and variance are with respect to the distribution
of wi.

5 Some notes on calculation of W

The genotype matrix W can be designed in several ways. The overall assumption is that it links the n
genotyped individuals to the m markers (after quality control, etc.). It is therefore an q × m matrix, where
each row corresponds to an individual and each column to a marker.

The most basic matrix is the marker count matrix M or minimal allele count matrix, where each element in
M takes the value 0, 1 or 2 (in diploid species). Legarra and Misztal [2008] use an allele coding of -1, 0 and
1, and in this case, diagonals of MM′ count the number of homozygous loci per individual, and diagonals
of M′M count the homozygous individuals per locus [VanRaden, 2008].

Choice of allele coding should not affect the statistical inference of variance, but it can affect the reliabilities
of estimated breeding values [Strandén and Christensen, 2011]. Besides the papers mentioned, Strandén and
Christensen [2011] also has a useful discussion of the coding and the consequences in e.g. estimating breeding
values.

Here, unless otherwise noted, each column vector (wi) of the genotype matrix W is defined as

wi = mi − Mean(mi)√
Var(mi)

(11a)

or equivalently
wi = mi − 2pi√

2pi(1 − pi)
(11b)

where pi is the allele frequency of the ith marker2.

This calculation scales and centres each column of the resulting W matrix to expectation equal 0 and variance
equal 1.

2The allele frequency is preferable from an unselected base population [VanRaden, 2008].
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Setting the mean equal to 0 is done in order to give more emphasis to the rare alleles which are thought to
have a larger impact on most of the traits of interest. Another consequence is that the resulting genomic
relationship matrix better describes family relationships, as the rare alleles usually only exist within closely
related individuals. The resulting genomic relationship matrix G is calculated as in VanRaden [2008]:

G = WW′

m
(12)

Another method widely used to calculate the genomic relationship matrix is explained in VanRaden [2008].
Instead of centring and scaling each column of M to obtain W, the scaling is done on the relationship matrix
using the total variance, νp.:

w∗
i = mi − 2pi (13)

G∗ = W∗W∗′

νp
(14)

where νp = 2
∑

i pi(1 − pi). The resulting G∗ matrix has been scaled by the total variance at all loci (νp)
rather than scaling each locus (i.e. column) by their own variance.

The last method produces a genomic relationship matrix having the same scale as the Numerator Relationship
Matrix, A, calculated using the pedigree. This means that the genomic inbreeding coefficient for an individual
i can be calculated as G∗

ii −1, and the genomic relationship among two individuals j and k as G∗
jk/(

√
G∗

jj +√
G∗

kk) [VanRaden, 2008]. Further, Ober et al. [2012] showed that E(G∗) = A, confirming all the properties
listed above.

Table 1: Two forms of genotype matrix W.

Variant Calculation Relationship Properties

W wi = mi−2pi√
2pi(1−pi)

G = WW′

m W ∼ (0, 1)

W∗ w∗
i = mi − 2pi G∗ = W∗W∗′

νp
W ∼ (0, ?)

νp = 2
∑

i
pi(1 − pi)

We note here that when utilising W to construct the genomic relationship matrix, the markers with high
heterozygosity are weighted more than rare alleles due to the scaling by

√
2pi(1 − pi). With the alternative

genotype matrix, W ∗, all markers are weighted equally.

As noted in the beginning of this section, the allele coding should not affect the estimated variance [Strandén
and Christensen, 2011]. The scaling, however, will. Furthermore, the M-BLUP model assumes a priori that
the estimated marker effects are sampled from the same distribution. If we had any notion that some of the
markers might be more informative towards a complex trait, we have two choices: we can specify a weight
for each marker based on e.g. results from a GWAS, or, if we want to isolate the contribution from a set
of markers, we can extend the BLUP models to having two random effects. The latter is described in the
following section.

6 Expansion of G-BLUP and M-BLUP to handle multiple marker
sets

Here, we will expand M-BLUP and G-BLUP to having two random genetic effects, indexed by 1 and 2.
Assumptions for these models are generally as above, and in the following example we have split the markers
into two groups 1 and 2. We start with the equations:
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y = µ + W1b1 + W2b2 + e (15a)
y = µ + g1 + g2 + e (15b)

where the variables are as in (1) and (4), but indexed for marker group 1 and 2.

We can summarise the distributions of these asb1
b2
e

 ∼ N

0
0
0

 ,

Im1σ2
b1

0 0
0 Im2σ2

b2
0

0 0 Dnσ2
e

 (16a)

for M-BLUP and for G-BLUP asg1
g2
e

 ∼ N

0
0
0

 ,

G1σ2
g1

0 0
0 G2σ2

g2
0

0 0 Dnσ2
e

 (16b)

where G1 and G2, respectively, are genetic relationship matrices constructed on the subsets of markers,
respectively, instead of all markers, and are a priori assumed uncorrelated.

The keen observer will notice that these are very similar to those in (3c) and (6c), although here, the two
random variables b1 and b2 (and g1 and g2) are assumed completely independent, an assumption that might
be disputed.

Stat 1: Marginalising conditional expectations

E(X) = EY [E(X|Y )]
V ar(X) = E(X2) − [E(X)]2

⇒ E(X2) = V ar(X) + (E(X))2
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