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1 Introduction

Quantitative genetics, also referred to as the genetics of complex traits, is the study of quantitative traits.
Quantitative genetics is based on models in which many genes influence the trait, and in which non-genetic
factors may also be important. Quantitative traits such as height, obesity or longevity vary greatly among
individuals. Quantitative trait phenotypes are continuously distributed and do not show simple Mendelian
inheritance (i.e., phenotypes that are distributed in discrete categories determined by one or a few genes).
The quantitative genetics framework can also be used to analyze categorical traits like number of children
given birth to (which consist of discrete counts like 0, 1, 2, 3, . . . ) or binary traits like survival to adulthood
(which consist of 0 or 1, ‘dead’ or ‘alive’, etc.) or multifactorial diseases as diabetes, provided they have a
polygenic basis (i.e., they are determined by many genes). The quantitative genetics approach has diverse
applications: it is fundamental to an understanding of variation and covariation among relatives in natural
and managed populations; it is also used as basis for predicting genetic predisposition in humans as well as
selective breeding methods in animal and plant populations.

This section introduces basic concepts used in Quantitative Genetics such as:
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• Genetic value and variance for a quantitative trait
• Genetic parameters (genetic variance, heritability, and correlation)
• Single locus model, multiple locus model and infinitesimal model
• Linkage disequilibrium (correlation among markers and QTLs)
• Genetic relationship inferred from pedigree or genetic marker data (correlation among individuals)

These concepts are relevant for a range of genetic and statistical analyses of human complex traits and
diseases including:

• Estimating the effect of single locus (or marker) for gene discovery
• Estimating the effect of multiple loci (or markers) for genomic prediction
• Estimating the heritability of a trait (the part of its variability due to genetics)
• Estimating genetic predisposition by pedigree or genomic information

2 Genetic Models

In this section we will be introducing the single-locus model and two-locus model for a quantitative trait.
Although quantitative traits are most likely influenced by many loci, it helps to first consider these simple
cases of only one or two causal loci affecting the trait. These simple models provides the theoretical basis for
more complex models including the infinitesimal model.These simple examples show how the combination of
gene action and allele frequencies at causal loci translate to genetic variance and genetic variance components
for a complex trait. This theory is highly relevant for understanding the statistical models used for genome-
wide associations and prediction studies of complex traits. It illustrate the relationship between a marker
effect size estimated from genome-wide associations studies and the variation the markers generates in the
population, i.e., how locus-specific effects lead to individual differences.

2.1 Single-locus model with additive and dominance effect

In the single-locus model, we consider a biallelic locus with allele A1 and A2, each with frequency p and
q = 1 − p. Under random mating and Hardy-Weinberg equilibrium, the expected genotype frequencies are
p2, 2pq and q2, for A1A1, A1A2 and A2A2 respectively. We arbitrarily assign genotypic values (i.e., trait
means per genotype class) a, d and −a to the three genotypes, d representing the dominance effect (within
locus interaction, no interaction when d = 0) and 2a the difference between the two homozygotes.

2.1.1 Population mean

The population mean under the single-locus model depends on the values of a and d and on the allele
frequencies p and q:

µ = p2a + 2pqd − q2a (1)
µ = (2p − 1)a + 2pqd

µ = (p − q)a + 2pqd

The larger the difference between p and q the more influence the value a has on µ relatively to d. On the
other hand, if p = q = 0.5, then µ = 0.5d. For loci with d = 0, the population mean µ = (p − q)a and hence,
if in addition we have p = q, then µ = 0.
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2.1.2 Average effect of gene (allele) substitution

The transmission of value from parents to offspring occurs through their alleles and not their genotypes. The
average effect of gene substitution (α) is defined as the average effect on the trait when substituting alleles
at this locus in the population. (The average effect is also called additive genetic effect in the literature). It
can also be defined as the mean value of genotypes produced by different gametes:

α = a + (1 − 2p)d (2)
α = a + (q − p)d (3)

2.1.3 Additive genetic values and dominance deviations

The additive genetic values are the expected genotypic values under additivity. The additive genetic values
for the three genotypes A1A1, A1A2 and A2A2 (expressed as deviations from the population mean µ) are
(2 − 2p)α = 2(1 − p)α = 2qα, (1 − 2p)α = (p + q − 2p)α = (q − p)α, and (0 − 2p)α = −2pα. The additive
genetic value (i.e. breeding value), is also defined as the expected genotypic value of the progeny an individual
produces, is the sum of average allelic effects each diploid individual carries. The dominance deviations for
the three genotypes A1A1, A1A2 and A2A2 are −2q2d, 2pqd, and −2p2d.
The following table summarizes all genotypic values, all additive genetic values and the dominance deviations.

Genotype Frequency Genotypic value Additive Genetic Value Dominance Deviation
A1A1 p2 a 2qα −2q2d
A1A2 2pq d (q − p)α 2pqd
A2A2 q2 −a −2pα −2p2d

The formulas in the above shown table assume that A1 is the favorable allele with frequency p. The allele
frequency of A2 is q, and since we have a bi-allelic locus, p + q = 1.

2.1.4 Genetic variance

For the single-locus model the total genotypic variance (σ2
g) is partitioned into additive (σ2

a) and dominance
(σ2

d) variance:

σ2
g = σ2

a + σ2
d (4)

2.1.4.1 Additive variance The additive variance (σ2
a) is the variance of additive genetic values. When

values are expressed in terms of deviation from the population mean, the variance simply becomes the
mean of the squared values. Hence, σ2

a is obtained by squaring the additive genetic values described above,
multiplying by the corresponding frequencies and summing over the 3 genotypes, leading to:

σ2
a = 2p(1 − p)[a + d(1 − 2p)]2 = 2p(1 − p)α2 = Hα2 (5)

σ2
a = 2pq[a + d(q − p)]2 = 2pqα2 = Hα2 (6)

with H the heterozygosity at the locus. Note that σ2
a contain both a term due to additivity (a) and dominance

(d) through the average effect α.

2.1.4.2 Dominance variance Similarly, the dominance variance (σ2
d) is the variance of dominance

deviations:

σ2
d = (2p(1 − p)d)2 = H2d2 (7)

σ2
d = (2pqd)2 = H2d2 (8)

Therefore, the dominance variance disproportionally depends on the locus heterozygosity compared to the
additive variance (H2 versus H).
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2.2 Two-locus model with additive and additive-by-additive effect

We extend the one-locus to a two-locus model with additive and additive-by-additive epistatic interaction
only, assuming no within loci dominance effects (d = 0 at both loci). We introduce a second (unlinked) locus
with alleles B1 and B2 in frequencies q and 1 − q respectively. The genotypic values and allele frequencies
of the 9 genotypes are:

Genotype Frequency Genotypic value
A1A1B1B1 p2

Ap2
B aA + aB + aAB

A1A1B1B2 p2
A2pBqB aA

A1A1B2B2 p2
Aq2

B aA − aB − aAB

A1A2B1B1 2pAqAp2
B aB

A1A2B1B2 2pAqA2pBqB 0
A1A2B2B2 2pAqAq2

B −aB

A2A2B1B1 q2
Ap2

B −aA + aB − aAB

A2A2B1B2 q2
A2pBqB −aA

A2A2B2B2 q2
Aq2

B −aA − aB + aAB

where aA (aB) is the genotypic value for the upper homozygote A1A1 (B1B1) and aAB is the additive-
by-additive interaction effect. This is a re-parametrization of the model described by Mäki-Tanila and Hill
(2014).

2.2.1 Population mean

In our model, the mean of the genotypic values is:

µ = aA(2p − 1) + aB(2q − 1) + aAB(1 − 2(p + q) + 4pq) (9)

Note that the expression of µ depends on the arbitrarily assigned genotypic values.

Average effect of gene (allele) substitution In this model, the locus specific average effects are:

αA = aA + 2qaAB (10)
αB = aB + 2paAB (11)

2.2.2 Genetic variance

The total genotypic variance (σ2
g) of the model is partitioned into additive (σ2

a) and additive-by-additive
(σ2

aa) variance.

σ2
g = σ2

a + σ2
aa (12)

2.2.2.1 Additive variance The additive variance of the model is σ2
a =

∑
i Hiα

2
i , with Hi the heterozy-

gosity at locus i (i = A, B) and αi the average effect of locus i. Hence:

σ2
a = 2p(1 − p)[aA + 2qaAB ] + 2q(1 − q)[aB + 2paAB ] (13)

Note that σ2
a contains a term due pairwise additive-by-additive interaction between locus A and B (aAB).
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2.2.2.2 Additive-by-Additive variance The additive-by-additive variance of the model is:

σ2
aa =

∑
i

∑
j>i HiHja2

ij , with Hi the heterozygosity at locus i (i = A, B) and aij the additive-by-additive
interaction effect between locus i and j. Hence:

σ2
aa = 4p(1 − p)q(1 − q)aAB (14)

Therefore, the additive-by-additive variance disproportionally depends on the locus heterozygosity as com-
pared to the additive variance.

2.3 General two locus model

Lastly, we use a generalized two-locus model where the user can provide all the genotypic values in an
interactive table and choose the allele frequencies at the two loci (p and q). The genotypic values as well as
the linear regressions are plotted as a function of the A1 allelic dosage for the different genotypes at locus B,
as well as the linear regression of the genotypic values weighted by their frequency on the A1 allele dosage.
The total genotypic variance (σ2

g) of this model is then partitioned in five components:

σ2
g = σ2

a + σ2
d + σ2

aa + σ2
ad + σ2

dd (15)

Where σ2
ad is the additive-by-dominance variance and σ2

d the dominance-by-dominance variance.

2.3.1 Interpretation of different types of genetic variances

These simple examples illustrates two important findings. First, the genetic architecture of quantitative traits
cannot be inferred from variance component analysis (Huang & Mackay 2016). This is because there is not a
one-to-one correspondence between gene action (i.e. a and d) at underlying causal loci and the partitioning of
variance components (e.g. σ2

a and σ2
d) except under very specific and restrictive circumstances (e.g. p = q). In

the single-locus model both additive and dominant gene actions (i.e. a and d) contribute to additive genetic
variance σ2

a = 2pq[a+d(q−p)]2. Therefore the relative magnitude of different gene actions cannot be inferred
from the relative magnitude of different genetic variance components. A large σ2

a and small σ2
d and σ2

aa mean
nothing more than a specific partition of genetic variance and there are potentially an infinite number of such
partitions,some having larger seemingly additive components than others (Huang & Mackay 2016). Second,
the non-additive variance (e.g. dominance and additive-by-additive) disproportionally depends on the locus
heterozygosity as compared to the additive variance. Therefore non-additive variance usually do not explain
individual differences in a population. However, as stated previously, this does NOT imply that dominance
and epistatic gene actions are NOT important.

2.4 Infinitesimal model

The infinitesimal model, also known as the polygenic model, is a widely used genetic model in quantitative
genetics. Originally developed in 1918 by Ronald Fisher, it is based on the idea that variation in a quantitative
trait is influenced by an infinitely large number of genes (or loci), each of which makes an infinitely small
(infinitesimal) contribution to the phenotype, as well as by environmental (non-genetic) factors. In the most
basic model the phenotype (P ) is the sum of genetic values (G), and environmental values (E):

P = G + E (16)

The genotypic effect (G) in the model can be divided into additive values (A), dominance deviations (D),
and epistatic deviations (I) such that the expanded infinitesimal model becomes:

P = A + D + I + E (17)
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The genotypic values may also depend on the environment in which they are expressed. Therefore we may
consider an extended version of the infinitesimal model where the phenotype (P ) is the sum of genotypic
values (G), environmental effect (E), and genotype-environment interaction values (G × E):

P = G + E + G × E (18)

In practice, the genotype-environment interaction effect can be important for the expression of the phenotype,
but for the sake of simplicity we will ignore them in the remainder of this section. Therefore, in the following,
we will assume that genotypic values are not impacted by environmental factors.

2.4.1 Infinite number of loci each with small effect on the phenotype

Quantitative traits do not behave according to simple Mendelian inheritance laws. More specifically, their
inheritance cannot be explained by the genetic segregation of one or a few genes. Even though Mendelian
inheritance laws accurately depict the segregation of genotypes in a population, they are not tractable with
the large number of genes which typically affect quantitative traits. To better understand the infinitesimal
model assume Mendelian inheritance to occur at every locus in the genome. Let’s say there are 30,000 gene
loci in the genome. The number of alleles at each locus varies from 2 to 30 or more. If we assume that
there are only two alleles (3 possible genotypes) per locus, and gene loci segregate independently, then the
number of possible genotypes (considering all loci simultaneously) would be 330000 which is large enough to
give the illusion of an infinite number of loci. Furthermore each of these loci could contribute additive and
dominance effects in addition to interaction effects.

2.4.2 Distribution of genotypic and phenotypic values

When a single locus affects a quantitative trait, a single-locus model is used to model the genetic basis of
the trait. The distribution of the genotypic values for a set of individuals will be discrete. The frequency of
the genotypic values depend on genotype frequencies, which in turn depend on allele frequencies of A1 and
A2. The phenotype is however also influenced by the environment. If we assume that the environmental
effects are normally distributed (e.g. N (0, σ2 = 1)) then we can observe that the phenotype distribution is
in fact normally distributed (or a mixture of normal distributions). When multiple loci affect a quantitative
trait, a polygenic- or an infinitesimal model is applied to model the genetic basis of the trait. When several
loci are causal (i.e., they have an effect on a certain trait), it is referred to as a polygenic model. When
the number of causal loci tend to infinity, it is referred to as an infinitesimal model. From a statistical
point of view, the genetic values in an infinitesimal model are considered random with a known distribution.
According to the central limit theorem, the distribution of any sum of a large number of very small effects
converges to a normal distribution. Therefore, the genetic values in an infinitesimal model tends to a normal
distribution, because of the infinitely large number of causal loci.

2.4.3 Genetic parameters

The key genetic parameters in the infinitesimal model include genetic variance, heritability and genetic
correlations. These parameters are derived based fundamental statistical methods and concepts introduced
by Fisher (1918) and Wright (1921) such as analysis of variance used for the partition of phenotypic variation
into heritable (A) and non-heritable components (D, I and E)) and resemblance among relatives which is
based on the estimations of the proportion of loci shared by relatives under the infinitesimal model.

2.4.3.1 Genetic variance: In the model proposed by Fisher (1918), Cockerham (1954) and Kempthorne
(1954), covariance among relatives is described in terms of the additive genetic variance σ2

A (variance of
additive genetic effects, or additive genetic values), dominance variance σ2

D (variance of interaction effects
between alleles in the same locus), and epistatic variance σ2

AA, σ2
AD, σ2

DD (variance of interaction effects –
additive and/or dominance effects – among loci) (Falconer & Mackay 1996; Lynch & Walsh 1998).
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Thus the overall phenotypic variance (σ2
P ) can be partitioned:

σ2
P = σ2

G + σ2
E

= σ2
A + σ2

D + σ2
AA + σ2

AD + σ2
DD + σ2

E (19)

These partitions are not dependent on numbers of genes or how they interact, but in practice the model is
manageable only when the effects are independent from each other, requiring many important assumptions.
These include random mating, and hence Hardy-Weinberg equilibrium (i.e. no inbred individuals), linkage
equilibrium (independent segregation of loci, which requires many generations to achieve for tightly linked
genes) and no selection.

2.4.3.2 Heritability: The models and summary statistics defined by Fisher and Wright have remained
at the heart of quantitative genetics, not least because they provide ways to make predictions of important
quantities, such as

Broad-sense heritability, the ratio of total genetic variance VG to the overall phenotypic variance VP :

H2 = σ2
G/σ2

P

= (σ2
A + σ2

D + σ2
I )/σ2

P (20)

Narrow-sense heritability, the ratio of additive genetic variance VA to the overall phenotypic variance
VP :

h2 = σ2
A/σ2

P (21)

2.4.3.3 Genetic correlation: In a general quantitative genetic model in which, for each individual, two
traits (P1 and P2) are each defined as the sum of a genetic value (G1 and G2) and an environmental value
(E1 and E2), [OR RATHER USE: In a general quantitative genetic model, where two traits (P1 and P2) are
each defined as the sum of a genetic value (G1 and G2) and an environmental value (E1 and E2),]

P1 = G1 + E1

P2 = G2 + E2

the phenotypic correlation (ρP12) between the traits is defined as:

ρP12 = σP12√
σ2

P1
σ2

P2

(22)

where σP12 is the phenotypic covariance and σ2
P1

and σ2
P2

are the variances of the phenotypic values for the
two traits in the population,

and the genetic correlation (ρG12) of the traits is defined as:

ρG12 = σG12√
σ2

G1
σ2

G2

(23)

where σG12 is the genetic covariance and σ2
G1

and σ2
G2

are the variances of the genetic values for the two
traits in the population.
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2.4.4 Resemblance among relatives:

The variance–covariance matrix of phenotypic values (VP ) of a group of individuals for a single trait can be
partitioned in a similar way

VP = VG + VE

= VA + VD + VAA + VAD + VE

= Aσ2
A + Dσ2

D + A ◦ Aσ2
AA + A ◦ Dσ2

AD + Iσ2
E (24)

where A is the additive genetic relation matrix, and D is the dominance relationship matrix. For the
epistatic terms, ◦ denotes element-by-element multiplication, but applies only for unlinked loci. The genetic
relationship matrices (A and D) can be constructed using marker or pedigree information as will be shown
later in the notes.

Many more terms may be included, such as maternal genetic effects, and genotype by environment interac-
tions. The advantage of this model is that it is all-accomodating, whereas a disadvantage is that datasets
may allow to partition only a few components. In practice, assumptions must be made to reduce the com-
plexity of the resemblance among relatives. Usually, the resemblance among relatives is assumed to depend
only on additive genetic variance σ2

A and dominance variance σ2
D ignoring epistatic variance (e.g. σ2

AA).

3 Genomic information

The use of genomic information due to the dramatic development in genotyping technologies has revolution-
ized the field of quantitive genetic. Today dense genetic maps are available for most of the most important
plant and animal species including humans. The genetic maps are based on DNA markers in the form of
single nucleotide polymorphisms (SNP) and they enable us to divide the entire genome into thousands of
relatively small chromosome segments. Ultimately the entire genome may be sequenced, but this is still very
expensive.

3.1 Genetic markers

The different locations in the genome that are considered in genomic analysis are called markers. When
looking at the complete set of markers making up the genomic information in a population, the so-called
Single Nucleotide Polymorphisms (SNPs) have been shown to be the most useful types of markers.
These SNPs correspond to differences of single bases at a given position in the genome. Based on empirical
analyses of very many SNP-loci, almost all SNP just take two different states. Furthermore it is important
that these SNPs are more or less evenly spread over the complete genome. Some SNPs may be located in
coding regions and some my be placed in regions of unknown function.

After all, what are SNPs? The genome is composed of 4 different nucleotides (A, C, T, and G). If you
compare the DNA sequence from 2 individuals, there may be some positions were the nucleotides differ.
The reality is that SNPs have become the bread-and-butter of DNA sequence variation (Stoneking 2001)
and they are now an important tool to determine the genetic potential of livestock. SNPs have become
the main marker used to detect variation in the DNA. An important reason is that SNPs are abundant,
as they are found throughout the entire genome (Schork, Fallin, and Lanchbury 2000). There are about 3
billion nucleotides in the bovine genome, and there are over 30 million SNPs or 1 every 100 nucleotides is a
SNP. Another reason is the location in the DNA: they are found in introns, exons, promoters, enhancers, or
intergenic regions. In addition, SNPs are now cheap and easy to genotype in an automated, high-throughput
manner because they are binary. One of the benefits of marker genotyping is the detection of genes that
affect traits of importance. The main idea of using SNPs in this task is that a SNP found to be associated
with a trait phenotype is a proxy for a nearby gene or causative variant (i.e., a SNP that directly affects
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the trait). As many SNPs are present in the genome, the likelihood of having at least 1 SNP linked to
a causative variant greatly increases, augmenting the chance of finding genes that actually contribute to
genetic variation for the trait.

3.2 Quantitative Trait Loci and linkage disequilibrium

The loci that are relevant for a quantitative trait are called Quantitative Trait Loci (QTL). Any given
SNP-Marker can only be informative for a given QTL, if a certain linkage disequilibrium between the
QTL and the marker locus exists. The idea behind linkage disequilibrium is that a certain positive QTL-
allele evolved in a certain genetic neighborhood of a number of SNP loci. As a result of that the positive
QTL-allele is very often inherited with the same SNP-allele. Over the generations, recombination between
the QTL and the neighboring SNP-loci can happen and thereby weaken the statistical association between
the positive QTL-allele and the given SNP-allele. This recombination effect is smaller when the QTL and
the SNP-loci are physically closer together on the chromosome. The non-random association between QTL
and SNP-markers is called linkage disequilibrium. A large number of SNP markers (>1M) are required to
get a sufficient coverage of the genetic variation in the human genome.

Markers may be linked to QTL or genes through linkage disequilibrium (LD). The LD is based on expected
versus observed allele frequencies and measures the non-random association of alleles across loci. The
strength of the association between two loci is measured by the correlation. We assume that, if neighboring
SNPs are tightly correlated, then QTLs that are “in the middle” should be strongly correlated as well (this
might not be true – for instance if all QTLs have very low frequency, but that seems unlikely).

3.3 Linkage disequilibrium

Linkage disequilibrium (LD) is often measured by two statistics, D and r, which can be interpreted as the
covariance and the correlation between loci and across gametes. The marker loci are called M and Q, then
the LD can be measured by

D = p(M1Q1) ∗ p(M2Q2) − p(M1Q2) ∗ p(M2Q1) (25)

where p(MxQy) corresponds to the frequency of the combination of marker alleles Mx and Qy (i.e. haplotype
or gamete). Very often the LD measure shown in (25) is re-scaled to the interval between 0 and 1 which
leads to

r2 = D2

p(M1) ∗ p(M2) ∗ p(Q1) ∗ p(Q2) (26)

In (26) r2 describes the proportion of the variance at the marker Q which is explained by the marker M .
Hence the LD must be high such that the marker M can explain a large part of the variance at marker Q.

Both D and r depend on the reference allele (e.g. it is not the same to use as M1 or M2 as reference allele)
but r2 is invariant to the reference allele. In order to compute D (25) the frequency of the haplotypes are
required. It is possible to infer haplotypes from the genotypes.

An alternative is to compute Pearson’s correlation coefficient between allele counts of the reference alleles at
each marker loci obtained from individuals from LD reference panel (e.g. study population):

rkl = cor(xk, xl) (27)
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where xk and xl are vectors of allele counst for markers k and l. For diploids xk = 2, 1, or 0 representing
the number of A1 alleles (defined as the reference allele) in genotypes A1A1, A1A2, and A2A, and xk = 2,
1, and 0 representing the number of B1 alleles in genotypes B1B1, B1B2, and B2B2. It has been shown that
this provide an accurate estimator of LD (Rogers and Huff 2009).

4 Genetic relationships among individuals

Estimating heritability and genetic predisposition requires that the phenotypic covariance between related
individuals can be expressed by their additive genetic relationship (A) and the additive genetic variance
(σ2

a). Related individuals share more alleles and thus resemble each other (have correlated phenotypes, to
an extent that depends on the genetic relationships). Genetic relationships can be inferred from pedigree og
genetic marker data.

4.1 Genetic relationships among individuals estimated from pedigree data

The genetic covariance between individuals depends on the additive genetic relationship. Examples of differ-
ent types of additive genetic relationships can be found in the table below. The additive genetic relationship
(Aij) between the various sources (j) and the individual itself (i) can be seen in the table below.

Table 1: Examples on additive genetic relationship (Aij) between individual i and j.

Type of relative Aij

Self 1.0
Unrelated 0
Mother 0.5
Father 0.5
Grandparent 0.25
Child 0.5
Full-sib 0.5
Half-sib 0.25
Twins (MZ/DZ) 1/0.5
Cousin 0.0625

The A matrix expresses the additive genetic relationship among individuals in a population, and is called
the numerator relationship matrix A. The matrix A is symmetric, where the diagonal elements (i.e.,
Aii) are equal to 1 + Fi where Fi is the coefficient of inbreeding of individual i. Fi is defined as the
probability that two alleles taken at random from individual i are identical by descent (i.e., that the two
alleles originate from the same common ancestor). As such, Fi is also the kinship coefficient of its parents
(half their genetic relationship).

Each off-diagonal elements (Aij) is the additive genetic relationship between individuals i and j. Multiplying
the matrix A by the additive genetic variance σ2

a leads to the covariance among the individual genetic values.
Thus, if ai is the genetic value of individual i then,

V ar(ai) = Aiiσ
2
a = (1 + Fi)σ2

a. (28)

The additive genetic relationship matrix A can be computed using a recursive method.
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4.2 Genetic relationships among individuals estimated from genetic markers

A large number of genetic marker are required to get an accurate estimate of the genomic relationships among
individuals. The elements in genotype matrix M can be encoded in different ways. Genotypes represent the
nucleotide configuration that can be found at a given SNP position. For the use in the linear model we have
to use a different encoding. Let us assume that at a given SNP-position, the bases G or C are observed and
G corresponds to the allele with the positive effect on our trait of interest. Based on the two observed alleles,
the possible genotypes are GG, GC or CC. One possible code for this SNP in the matrix M might be the
number of G-Alleles which corresponds to 2, 1 and 0. Alternatively, it is also possible to use the codes 1, 0
and −1 instead which corresponds to the factors with which a is multiplied to get the genotypic values in
the single locus model.

Multiplying the matrix M with its transpose MT results in a n × n square matrix MMT . On the diagonal
of this matrix we get counts of how many alleles in each individual have a positive effect. The off-diagonal
elements count how many individual share the same alleles across all SNP-positions. The additive genomic
relationship matrix G is constructed using all genomic markers as follows:

G = WW T∑m
i=1 2pi(1 − pi)

(29)

where W is the centered and scaled genotype matrix, and m is the total number of markers. Each column
vector of W was calculated as follows: wi = Mi − 2pi − 0.5, where pi is the minor allele frequency of the
i’th genomic marker and Mi is the i’th column vector of the allele count matrix, M , which contains the
genotypes coded as 0, 1 or 2 counting the number of minor allele. The centering of the allele counts and
scaling factor

∑m
i=1 2pi(1 − pi) ensures that the genomic relationship matrix G has similar properties as the

numerator relationship matrix A.

The main difference between the two types of genetic relationship matrices (A and G) is that A is based on
the concept of identity by descent (sharing of the same alleles, transmitted from common ancestors) whereas
G is based on the concept of identity by state (sharing of the same alleles, regardless of their origin).
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